BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 19655380)

  • 1. Enzyme-assisted physicochemical enantioseparation processes-Part III: Overcoming yield limitations by dynamic kinetic resolution of asparagine via preferential crystallization and enzymatic racemization.
    Würges K; Petrusevska-Seebach K; Elsner MP; Lütz S
    Biotechnol Bioeng; 2009 Dec; 104(6):1235-9. PubMed ID: 19655380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Model-based characterization of an amino acid racemase from Pseudomonas putida DSM 3263 for application in medium-constrained continuous processes.
    Bechtold M; Makart S; Reiss R; Alder P; Panke S
    Biotechnol Bioeng; 2007 Nov; 98(4):812-24. PubMed ID: 17486655
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enantioselective synthesis of L-homophenylalanine by whole cells of recombinant Escherichia coli expressing L-aminoacylase and N-acylamino acid racemase genes from Deinococcus radiodurans BCRC12827.
    Hsu SK; Lo HH; Kao CH; Lee DS; Hsu WH
    Biotechnol Prog; 2006; 22(6):1578-84. PubMed ID: 17137304
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzymatic production of L-tryptophan from DL-serine and indole by a coupled reaction of tryptophan synthase and amino acid racemase.
    Ishiwata K; Fukuhara N; Shimada M; Makiguchi N; Soda K
    Biotechnol Appl Biochem; 1990 Apr; 12(2):141-9. PubMed ID: 2109982
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of DL-tryptophan by modified broad specificity amino acid racemase from Pseudomonas putida IFO 12996.
    Kino K; Sato M; Yoneyama M; Kirimura K
    Appl Microbiol Biotechnol; 2007 Jan; 73(6):1299-305. PubMed ID: 17028872
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immobilization of an amino acid racemase for application in crystallization-based chiral resolutions of asparagine monohydrate.
    Carneiro T; Wrzosek K; Bettenbrock K; Lorenz H; Seidel-Morgenstern A
    Eng Life Sci; 2020 Dec; 20(12):550-561. PubMed ID: 33304228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of L-asparagine and N-phosphonacetyl-L-asparagine to investigate the linkage of catalysis and homotropic cooperativity in E. coli aspartate transcarbomoylase.
    Cardia JP; Eldo J; Xia J; O'Day EM; Tsuruta H; Gryncel KR; Kantrowitz ER
    Proteins; 2008 May; 71(3):1088-96. PubMed ID: 18004787
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of preferential crystallization to resolve racemic compounds in a hybrid process.
    Lorenz H; Polenske D; Seidel-Morgenstern A
    Chirality; 2006 Nov; 18(10):828-40. PubMed ID: 16917833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic kinetic resolution of amino acid amide catalyzed by D-aminopeptidase and alpha-amino-epsilon-caprolactam racemase.
    Asano Y; Yamaguchi S
    J Am Chem Soc; 2005 Jun; 127(21):7696-7. PubMed ID: 15913357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stereospecificity of thermostable ornithine 5-aminotransferase for the hydrogen transfer in the L- and D-ornithine transamination.
    Jhee KH; Yoshimura T; Esaki N; Soda K
    Biochemistry; 1996 Jul; 35(30):9792-6. PubMed ID: 8703952
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploiting racemases.
    Femmer C; Bechtold M; Roberts TM; Panke S
    Appl Microbiol Biotechnol; 2016 Sep; 100(17):7423-36. PubMed ID: 27444433
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression, purification and preliminary X-ray analysis of crystals of Bacillus subtilis glutamate racemase.
    Taal MA; Sedelnikova SE; Ruzheinikov SN; Baker PJ; Rice DW
    Acta Crystallogr D Biol Crystallogr; 2004 Nov; 60(Pt 11):2031-4. PubMed ID: 15502318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic resolution and chemoenzymatic dynamic kinetic resolution of functionalized gamma-hydroxy amides.
    Fransson AB; Borén L; Pàmies O; Bäckvall JE
    J Org Chem; 2005 Apr; 70(7):2582-7. PubMed ID: 15787546
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shortcut Model for Batch Preferential Crystallization Coupled with Racemization for Conglomerate-Forming Chiral Systems.
    Bhandari S; Carneiro T; Lorenz H; Seidel-Morgenstern A
    Cryst Growth Des; 2022 Jul; 22(7):4094-4104. PubMed ID: 35818384
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced conversion of racemic alpha-arylalanines to (R)-beta-arylalanines by coupled racemase/aminomutase catalysis.
    Cox BM; Bilsborrow JB; Walker KD
    J Org Chem; 2009 Sep; 74(18):6953-9. PubMed ID: 19711925
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Racemization of undesired enantiomers: Immobilization of mandelate racemase and application in a fixed bed reactor.
    Wrzosek K; Rivera MA; Bettenbrock K; Seidel-Morgenstern A
    Biotechnol J; 2016 Mar; 11(4):453-63. PubMed ID: 26773335
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amino acid racemization in Pseudomonas putida KT2440.
    Radkov AD; Moe LA
    J Bacteriol; 2013 Nov; 195(22):5016-24. PubMed ID: 23995642
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Freezing effect on chirality amplification of L-asparagine by crystallization of the racemate in preferential condition.
    Vajda T; Hollósi MM
    Cryo Letters; 2011; 32(6):447-50. PubMed ID: 22227704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient crystallization-induced dynamic resolution of alpha-substituted carboxylic acids.
    Kiau S; Discordia RP; Madding G; Okuniewicz FJ; Rosso V; Venit JJ
    J Org Chem; 2004 Jun; 69(12):4256-61. PubMed ID: 15176855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Purification and properties of amino acid racemase from Aeromonas punctata subsp. caviae.
    Inagaki K; Tanizawa K; Tanaka H; Soda K
    Prog Clin Biol Res; 1984; 144A():355-63. PubMed ID: 6427786
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.