These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 19655756)

  • 1. Molecular simulation of electric double-layer capacitors based on carbon nanotube forests.
    Yang L; Fishbine BH; Migliori A; Pratt LR
    J Am Chem Soc; 2009 Sep; 131(34):12373-6. PubMed ID: 19655756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Relation between the ion size and pore size for an electric double-layer capacitor.
    Largeot C; Portet C; Chmiola J; Taberna PL; Gogotsi Y; Simon P
    J Am Chem Soc; 2008 Mar; 130(9):2730-1. PubMed ID: 18257568
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon materials for supercapacitor application.
    Frackowiak E
    Phys Chem Chem Phys; 2007 Apr; 9(15):1774-85. PubMed ID: 17415488
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-rate electrochemical capacitors based on ordered mesoporous silicon carbide-derived carbon.
    Korenblit Y; Rose M; Kockrick E; Borchardt L; Kvit A; Kaskel S; Yushin G
    ACS Nano; 2010 Mar; 4(3):1337-44. PubMed ID: 20180559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A review of molecular modelling of electric double layer capacitors.
    Burt R; Birkett G; Zhao XS
    Phys Chem Chem Phys; 2014 Apr; 16(14):6519-38. PubMed ID: 24589998
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes.
    Huang J; Sumpter BG; Meunier V
    Chemistry; 2008; 14(22):6614-26. PubMed ID: 18576455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Materials for electrochemical capacitors.
    Simon P; Gogotsi Y
    Nat Mater; 2008 Nov; 7(11):845-54. PubMed ID: 18956000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dielectric saturation of liquid propylene carbonate in electrical energy storage applications.
    Yang L; Fishbine BH; Migliori A; Pratt LR
    J Chem Phys; 2010 Jan; 132(4):044701. PubMed ID: 20113053
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of capacitor's electrode from cassava peel waste.
    Ismanto AE; Wang S; Soetaredjo FE; Ismadji S
    Bioresour Technol; 2010 May; 101(10):3534-40. PubMed ID: 20093010
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distribution of carbon nanotube sizes from adsorption measurements and computer simulation.
    Kowalczyk P; Hołyst R; Tanaka H; Kaneko K
    J Phys Chem B; 2005 Aug; 109(30):14659-66. PubMed ID: 16852850
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrosorption capacitance of nanostructured carbon-based materials.
    Hou CH; Liang C; Yiacoumi S; Dai S; Tsouris C
    J Colloid Interface Sci; 2006 Oct; 302(1):54-61. PubMed ID: 16842809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. D.C. voltammetry of ionic liquid-based capacitors: effects of Faradaic reactions, electrolyte resistance and voltage scan speed investigated using an electrode of carbon nanotubes in EMIM-EtSO4.
    Zheng JP; Pettit CM; Goonetilleke PC; Zenger GM; Roy D
    Talanta; 2009 May; 78(3):1056-62. PubMed ID: 19269472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular Simulation Results on Charged Carbon Nanotube Forest-Based Supercapacitors.
    Muralidharan A; Pratt LR; Hoffman GG; Chaudhari MI; Rempe SB
    ChemSusChem; 2018 Jun; 11(12):1927-1932. PubMed ID: 29722479
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An experimental study of melting of CCl4 in carbon nanotubes.
    Jazdzewska M; Hung FR; Gubbins KE; Sliwinska-Bartkowiak M
    Phys Chem Chem Phys; 2005 Nov; 7(22):3884-7. PubMed ID: 16358040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer.
    Chmiola J; Yushin G; Gogotsi Y; Portet C; Simon P; Taberna PL
    Science; 2006 Sep; 313(5794):1760-3. PubMed ID: 16917025
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular dynamics simulations of atomically flat and nanoporous electrodes with a molten salt electrolyte.
    Vatamanu J; Borodin O; Smith GD
    Phys Chem Chem Phys; 2010 Jan; 12(1):170-82. PubMed ID: 20024457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electric double-layer capacitors based on highly graphitized nanoporous carbons derived from ZIF-67.
    Torad NL; Salunkhe RR; Li Y; Hamoudi H; Imura M; Sakka Y; Hu CC; Yamauchi Y
    Chemistry; 2014 Jun; 20(26):7895-900. PubMed ID: 24788922
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three-dimensionally arrayed and mutually connected 1.2-nm nanopores for high-performance electric double layer capacitor.
    Itoi H; Nishihara H; Kogure T; Kyotani T
    J Am Chem Soc; 2011 Feb; 133(5):1165-7. PubMed ID: 21207996
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved capacitance characteristics of electrospun ACFs by pore size control and vanadium catalyst.
    Im JS; Woo SW; Jung MJ; Lee YS
    J Colloid Interface Sci; 2008 Nov; 327(1):115-9. PubMed ID: 18771778
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hierarchical porous carbon microspheres derived from porous starch for use in high-rate electrochemical double-layer capacitors.
    Du SH; Wang LQ; Fu XT; Chen MM; Wang CY
    Bioresour Technol; 2013 Jul; 139():406-9. PubMed ID: 23684820
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.