These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 19655756)
21. Enhancement mechanism of electrochemical capacitance in nitrogen-/boron-doped carbons with uniform straight nanochannels. Kwon T; Nishihara H; Itoi H; Yang QH; Kyotani T Langmuir; 2009 Oct; 25(19):11961-8. PubMed ID: 19746941 [TBL] [Abstract][Full Text] [Related]
22. Adsorption of gases in carbon nanotubes: are defect interstitial sites important? Labrosse MR; Shi W; Johnson JK Langmuir; 2008 Sep; 24(17):9430-9. PubMed ID: 18683959 [TBL] [Abstract][Full Text] [Related]
23. "Egg-Box"-Assisted Fabrication of Porous Carbon with Small Mesopores for High-Rate Electric Double Layer Capacitors. Kang D; Liu Q; Gu J; Su Y; Zhang W; Zhang D ACS Nano; 2015 Nov; 9(11):11225-33. PubMed ID: 26418602 [TBL] [Abstract][Full Text] [Related]
25. Simple models of adsorption in nanotubes. Furmaniak S; Terzyk AP; Gauden PA; Rychlicki G J Colloid Interface Sci; 2006 Mar; 295(2):310-7. PubMed ID: 16427068 [TBL] [Abstract][Full Text] [Related]
26. Tailoring the pore alignment for rapid ion transport in microporous carbons. Kajdos A; Kvit A; Jones F; Jagiello J; Yushin G J Am Chem Soc; 2010 Mar; 132(10):3252-3. PubMed ID: 20170156 [TBL] [Abstract][Full Text] [Related]
27. Theoretical approach to ion penetration into pores with pore fractal characteristics during double-layer charging/discharging on a porous carbon electrode. Lee GJ; Pyun SI Langmuir; 2006 Dec; 22(25):10659-65. PubMed ID: 17129044 [TBL] [Abstract][Full Text] [Related]
28. Enhancement of the supercapacitive properties of laser deposited graphene-based electrodes through carbon nanotube loading and nitrogen doping. Pérez Del Pino Á; Rodríguez López M; Ramadan MA; García Lebière P; Logofatu C; Martínez-Rovira I; Yousef I; György E Phys Chem Chem Phys; 2019 Dec; 21(45):25175-25186. PubMed ID: 31693021 [TBL] [Abstract][Full Text] [Related]
29. A superionic state in nano-porous double-layer capacitors: insights from Monte Carlo simulations. Kondrat S; Georgi N; Fedorov MV; Kornyshev AA Phys Chem Chem Phys; 2011 Jun; 13(23):11359-66. PubMed ID: 21566824 [TBL] [Abstract][Full Text] [Related]
30. Tailoring of nanoscale porosity in carbide-derived carbons for hydrogen storage. Gogotsi Y; Dash RK; Yushin G; Yildirim T; Laudisio G; Fischer JE J Am Chem Soc; 2005 Nov; 127(46):16006-7. PubMed ID: 16287270 [TBL] [Abstract][Full Text] [Related]
31. Intrinsic ion selectivity of narrow hydrophobic pores. Song C; Corry B J Phys Chem B; 2009 May; 113(21):7642-9. PubMed ID: 19419185 [TBL] [Abstract][Full Text] [Related]
32. Unraveling the potential and pore-size dependent capacitance of slit-shaped graphitic carbon pores in aqueous electrolytes. Kalluri RK; Biener MM; Suss ME; Merrill MD; Stadermann M; Santiago JG; Baumann TF; Biener J; Striolo A Phys Chem Chem Phys; 2013 Feb; 15(7):2309-20. PubMed ID: 23295944 [TBL] [Abstract][Full Text] [Related]
33. Drag on a nanotube in uniform liquid argon flow. Tang W; Advani SG J Chem Phys; 2006 Nov; 125(17):174706. PubMed ID: 17100460 [TBL] [Abstract][Full Text] [Related]
34. Superionic state in double-layer capacitors with nanoporous electrodes. Kondrat S; Kornyshev A J Phys Condens Matter; 2011 Jan; 23(2):022201. PubMed ID: 21406834 [TBL] [Abstract][Full Text] [Related]
35. The ideal porous structure of EDLC carbon electrodes with extremely high capacitance. Urita K; Urita C; Fujita K; Horio K; Yoshida M; Moriguchi I Nanoscale; 2017 Oct; 9(40):15643-15649. PubMed ID: 28993824 [TBL] [Abstract][Full Text] [Related]
36. New ceramic-carbon composites for electrodes for electrochemical capacitors. Kosmulski M; Skubiszewska-Zieba J; Leboda R; Marczewska-Boczkowska K; Próchniak P J Colloid Interface Sci; 2007 May; 309(1):160-8. PubMed ID: 17335838 [TBL] [Abstract][Full Text] [Related]
37. Insights into the influence of the pore size and surface area of activated carbons on the energy storage of electric double layer capacitors with a new potentially universally applicable capacitor model. Heimböckel R; Hoffmann F; Fröba M Phys Chem Chem Phys; 2019 Feb; 21(6):3122-3133. PubMed ID: 30675602 [TBL] [Abstract][Full Text] [Related]
38. Origin of Enhanced Performance in Nanoporous Electrical Double Layer Capacitors: Insights on Micropore Structure and Electrolyte Composition from Molecular Simulations. Uralcan B; Uralcan IB ACS Appl Mater Interfaces; 2022 Apr; 14(14):16800-16808. PubMed ID: 35377144 [TBL] [Abstract][Full Text] [Related]
39. Tailoring graphene-based electrodes from semiconducting to metallic to increase the energy density in supercapacitors. Vatamanu J; Ni X; Liu F; Bedrov D Nanotechnology; 2015 Nov; 26(46):464001. PubMed ID: 26511198 [TBL] [Abstract][Full Text] [Related]
40. A novel carbon electrode material for highly improved EDLC performance. Fang B; Binder L J Phys Chem B; 2006 Apr; 110(15):7877-82. PubMed ID: 16610885 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]