These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 19655839)
1. Polarization of one-dimensional periodic systems in a static electric field: sawtooth potential treatment revisited. Kirtman B; Ferrero M; Rérat M; Springborg M J Chem Phys; 2009 Jul; 131(4):044109. PubMed ID: 19655839 [TBL] [Abstract][Full Text] [Related]
2. Efficient vector potential method for calculating electronic and nuclear response of infinite periodic systems to finite electric fields. Springborg M; Kirtman B J Chem Phys; 2007 Mar; 126(10):104107. PubMed ID: 17362061 [TBL] [Abstract][Full Text] [Related]
3. Large changes of static electric properties induced by hydrogen bonding: an ab initio study of linear HCN oligomers. Góra RW; Zaleśny R; Zawada A; Bartkowiak W; Skwara B; Papadopoulos MG; Silva DL J Phys Chem A; 2011 May; 115(18):4691-700. PubMed ID: 21491879 [TBL] [Abstract][Full Text] [Related]
4. Calculations of static dipole polarizabilities of alkali dimers: prospects for alignment of ultracold molecules. Deiglmayr J; Aymar M; Wester R; Weidemüller M; Dulieu O J Chem Phys; 2008 Aug; 129(6):064309. PubMed ID: 18715071 [TBL] [Abstract][Full Text] [Related]
5. Modeling the electric field third-order nonlinear responses of an infinite aggregate of hexatriene chains using the electrostatic interaction model. Guillaume M; Champagne B Phys Chem Chem Phys; 2005 Sep; 7(18):3284-9. PubMed ID: 16240042 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of electronic correlation contributions for optical tensors of large systems using the incremental scheme. Yang J; Dolg M J Chem Phys; 2007 Aug; 127(8):084108. PubMed ID: 17764230 [TBL] [Abstract][Full Text] [Related]
7. Calculation of static and dynamic linear magnetic response in approximate time-dependent density functional theory. Krykunov M; Autschbach J J Chem Phys; 2007 Jan; 126(2):024101. PubMed ID: 17228937 [TBL] [Abstract][Full Text] [Related]
8. Calculations of the thermal conductivities of ionic materials by simulation with polarizable interaction potentials. Ohtori N; Salanne M; Madden PA J Chem Phys; 2009 Mar; 130(10):104507. PubMed ID: 19292541 [TBL] [Abstract][Full Text] [Related]
9. Nonmetallic electronegativity equalization and point-dipole interaction model including exchange interactions for molecular dipole moments and polarizabilities. Smalø HS; Astrand PO; Jensen L J Chem Phys; 2009 Jul; 131(4):044101. PubMed ID: 19655831 [TBL] [Abstract][Full Text] [Related]
10. Implementation of the finite field perturbation method in the CRYSTAL program for calculating the dielectric constant of periodic systems. Darrigan C; Rérat M; Mallia G; Dovesi R J Comput Chem; 2003 Aug; 24(11):1305-12. PubMed ID: 12827671 [TBL] [Abstract][Full Text] [Related]
11. Correlations of the stability, static dipole polarizabilities, and electronic properties of yttrium clusters. Li XB; Wang HY; Lv R; Wu WD; Luo JS; Tang YJ J Phys Chem A; 2009 Sep; 113(38):10335-42. PubMed ID: 19722531 [TBL] [Abstract][Full Text] [Related]
12. Dielectric response of modified Hubbard models with neutral-ionic and Peierls transitions. Soos ZG; Bewick SA; Peri A; Painelli A J Chem Phys; 2004 Apr; 120(14):6712-20. PubMed ID: 15267564 [TBL] [Abstract][Full Text] [Related]
13. Inclusion of the quadrupole moment when describing polarization. The effect of the dipole-quadrupole polarizability. Holt A; Karlström G J Comput Chem; 2008 Sep; 29(12):2033-8. PubMed ID: 18432620 [TBL] [Abstract][Full Text] [Related]
14. A physical model for the longitudinal polarizabilities of polymer chains. Berger JA; de Boeij PL; van Leeuwen R J Chem Phys; 2005 Nov; 123(17):174910. PubMed ID: 16375572 [TBL] [Abstract][Full Text] [Related]
15. Key role of the polarization anisotropy of water in modeling classical polarizable force fields. Piquemal JP; Chelli R; Procacci P; Gresh N J Phys Chem A; 2007 Aug; 111(33):8170-6. PubMed ID: 17665882 [TBL] [Abstract][Full Text] [Related]
16. Linear optical transmission measurements and computational study of linear polarizabilities, first hyperpolarizabilities of a dinuclear iron(III) complex. Karakas A; Elmali A; Unver H Spectrochim Acta A Mol Biomol Spectrosc; 2007 Nov; 68(3):567-72. PubMed ID: 17353142 [TBL] [Abstract][Full Text] [Related]
17. Hyperpolarizabilities for the one-dimensional infinite single-electron periodic systems. II. Dipole-dipole versus current-current correlations. Xu M; Jiang S J Chem Phys; 2005 Aug; 123(6):64902. PubMed ID: 16122344 [TBL] [Abstract][Full Text] [Related]
18. Static and dynamic coupled perturbed Hartree-Fock vibrational (hyper)polarizabilities of polyacetylene calculated by the finite field nuclear relaxation method. Lacivita V; Rérat M; Kirtman B; Orlando R; Ferrabone M; Dovesi R J Chem Phys; 2012 Jul; 137(1):014103. PubMed ID: 22779633 [TBL] [Abstract][Full Text] [Related]
19. Ab initio investigation of electronic and vibrational contributions to linear and nonlinear dielectric properties of ice. Casassa S; Baima J; Mahmoud A; Kirtman B J Chem Phys; 2014 Jun; 140(22):224702. PubMed ID: 24929409 [TBL] [Abstract][Full Text] [Related]
20. The Electric Dipole Moment of the B(1)Pi State of ZrO. Pettersson A; Koivisto R; Lindgren B; Lundevall C; Royen P; Sassenberg U; Shi W J Mol Spectrosc; 2000 Mar; 200(1):65-71. PubMed ID: 10662577 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]