These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 19655967)
1. A method to investigate the electron scattering characteristics of ultrathin metallic films by in situ electrical resistance measurements. Trindade IG; Fermento R; Leitão D; Sousa JB Rev Sci Instrum; 2009 Jul; 80(7):073909. PubMed ID: 19655967 [TBL] [Abstract][Full Text] [Related]
2. A magnetron sputtering system for the preparation of patterned thin films and in situ thin film electrical resistance measurements. Arnalds UB; Agustsson JS; Ingason AS; Eriksson AK; Gylfason KB; Gudmundsson JT; Olafsson S Rev Sci Instrum; 2007 Oct; 78(10):103901. PubMed ID: 17979429 [TBL] [Abstract][Full Text] [Related]
3. In situ deformation of thin films on substrates. Legros M; Cabié M; Gianola DS Microsc Res Tech; 2009 Mar; 72(3):270-83. PubMed ID: 19189313 [TBL] [Abstract][Full Text] [Related]
4. Ultrastable and atomically smooth ultrathin silver films grown on a copper seed layer. Formica N; Ghosh DS; Carrilero A; Chen TL; Simpson RE; Pruneri V ACS Appl Mater Interfaces; 2013 Apr; 5(8):3048-53. PubMed ID: 23514424 [TBL] [Abstract][Full Text] [Related]
5. A load-lock compatible system for in situ electrical resistivity measurements during thin film growth. Colin JJ; Diot Y; Guerin P; Lamongie B; Berneau F; Michel A; Jaouen C; Abadias G Rev Sci Instrum; 2016 Feb; 87(2):023902. PubMed ID: 26931861 [TBL] [Abstract][Full Text] [Related]
6. Thermal and electrical conduction in ultrathin metallic films: 7 nm down to sub-nanometer thickness. Lin H; Xu S; Wang X; Mei N Small; 2013 Aug; 9(15):2585-94. PubMed ID: 23436742 [TBL] [Abstract][Full Text] [Related]
7. Relation between light scattering and the microstructure of optical thin films. Duparré A; Kassam S Appl Opt; 1993 Oct; 32(28):5475-80. PubMed ID: 20856358 [TBL] [Abstract][Full Text] [Related]
9. A compact UHV deposition system for in situ study of ultrathin films via hard x-ray scattering and spectroscopy. Couet S; Diederich T; Schlage K; Röhlsberger R Rev Sci Instrum; 2008 Sep; 79(9):093908. PubMed ID: 19044429 [TBL] [Abstract][Full Text] [Related]
10. Atom collision-induced resistivity of carbon nanotubes. Romero HE; Bolton K; Rosén A; Eklund PC Science; 2005 Jan; 307(5706):89-93. PubMed ID: 15637273 [TBL] [Abstract][Full Text] [Related]
11. Ultrathin carbon support films for high-resolution electron microscopy of nanoparticles. Kim YM; Kang JS; Kim JS; Jeung JM; Lee JY; Kim YJ Microsc Microanal; 2007 Aug; 13(4):285-90. PubMed ID: 17637077 [TBL] [Abstract][Full Text] [Related]
12. Electrical Characterization of Ultrathin RF-Sputtered LiPON Layers for Nanoscale Batteries. Put B; Vereecken PM; Meersschaut J; Sepúlveda A; Stesmans A ACS Appl Mater Interfaces; 2016 Mar; 8(11):7060-9. PubMed ID: 26963140 [TBL] [Abstract][Full Text] [Related]
13. Chemisorption and chemical reaction effects on the resistivity of ultrathin gold films at the liquid-solid interface. Zhang Y; Terrill RH; Bohn PW Anal Chem; 1999 Jan; 71(1):119-25. PubMed ID: 21662933 [TBL] [Abstract][Full Text] [Related]
14. Electron-Phonon Coupling Constant of Metallic Overlayers from Specular He Atom Scattering. Benedek G; Miret-Artés S; Toennies JP; Manson JR J Phys Chem Lett; 2018 Jan; 9(1):76-83. PubMed ID: 29240430 [TBL] [Abstract][Full Text] [Related]
15. Electrical resistivity and stoichiometry of kkhgr c60 films. Kochanski GP; Hebard AF; Haddon RC; Fiory AT Science; 1992 Jan; 255(5041):184-6. PubMed ID: 17756068 [TBL] [Abstract][Full Text] [Related]
16. Electron scattering and electrical conductance in polycrystalline metallic films and wires: impact of grain boundary scattering related to melting point. Zhu YF; Lang XY; Zheng WT; Jiang Q ACS Nano; 2010 Jul; 4(7):3781-8. PubMed ID: 20557119 [TBL] [Abstract][Full Text] [Related]
17. Thermal conductivity measurement and interface thermal resistance estimation using SiO2 thin film. Chien HC; Yao DJ; Huang MJ; Chang TY Rev Sci Instrum; 2008 May; 79(5):054902. PubMed ID: 18513085 [TBL] [Abstract][Full Text] [Related]
18. The experimental investigation of thermal conductivity and the Wiedemann-Franz law for single metallic nanowires. Völklein F; Reith H; Cornelius TW; Rauber M; Neumann R Nanotechnology; 2009 Aug; 20(32):325706. PubMed ID: 19620755 [TBL] [Abstract][Full Text] [Related]
19. MoS Shen T; Valencia D; Wang Q; Wang KC; Povolotskyi M; Kim MJ; Klimeck G; Chen Z; Appenzeller J ACS Appl Mater Interfaces; 2019 Aug; 11(31):28345-28351. PubMed ID: 31287653 [TBL] [Abstract][Full Text] [Related]
20. Electrical conductivity of graphene films with a poly(allylamine hydrochloride) supporting layer. Kong BS; Yoo HW; Jung HT Langmuir; 2009 Sep; 25(18):11008-13. PubMed ID: 19655807 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]