These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
783 related articles for article (PubMed ID: 19656195)
1. Growth of ammonia-oxidizing archaea in soil microcosms is inhibited by acetylene. Offre P; Prosser JI; Nicol GW FEMS Microbiol Ecol; 2009 Oct; 70(1):99-108. PubMed ID: 19656195 [TBL] [Abstract][Full Text] [Related]
2. The influence of soil pH on the diversity, abundance and transcriptional activity of ammonia oxidizing archaea and bacteria. Nicol GW; Leininger S; Schleper C; Prosser JI Environ Microbiol; 2008 Nov; 10(11):2966-78. PubMed ID: 18707610 [TBL] [Abstract][Full Text] [Related]
3. Growth, activity and temperature responses of ammonia-oxidizing archaea and bacteria in soil microcosms. Tourna M; Freitag TE; Nicol GW; Prosser JI Environ Microbiol; 2008 May; 10(5):1357-64. PubMed ID: 18325029 [TBL] [Abstract][Full Text] [Related]
4. Abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea communities of an alkaline sandy loam. Shen JP; Zhang LM; Zhu YG; Zhang JB; He JZ Environ Microbiol; 2008 Jun; 10(6):1601-11. PubMed ID: 18336563 [TBL] [Abstract][Full Text] [Related]
5. Bacteria, not archaea, restore nitrification in a zinc-contaminated soil. Mertens J; Broos K; Wakelin SA; Kowalchuk GA; Springael D; Smolders E ISME J; 2009 Aug; 3(8):916-23. PubMed ID: 19387487 [TBL] [Abstract][Full Text] [Related]
6. Activity, abundance and diversity of nitrifying archaea and bacteria in the central California Current. Santoro AE; Casciotti KL; Francis CA Environ Microbiol; 2010 Jul; 12(7):1989-2006. PubMed ID: 20345944 [TBL] [Abstract][Full Text] [Related]
7. Bacteria rather than Archaea dominate microbial ammonia oxidation in an agricultural soil. Jia Z; Conrad R Environ Microbiol; 2009 Jul; 11(7):1658-71. PubMed ID: 19236445 [TBL] [Abstract][Full Text] [Related]
8. Quantitative analyses of ammonia-oxidizing Archaea and bacteria in the sediments of four nitrogen-rich wetlands in China. Wang S; Wang Y; Feng X; Zhai L; Zhu G Appl Microbiol Biotechnol; 2011 Apr; 90(2):779-87. PubMed ID: 21253721 [TBL] [Abstract][Full Text] [Related]
9. Archaea rather than bacteria control nitrification in two agricultural acidic soils. Gubry-Rangin C; Nicol GW; Prosser JI FEMS Microbiol Ecol; 2010 Dec; 74(3):566-74. PubMed ID: 21039653 [TBL] [Abstract][Full Text] [Related]
10. Community composition of ammonia-oxidizing bacteria and archaea in soils under stands of red alder and Douglas fir in Oregon. Boyle-Yarwood SA; Bottomley PJ; Myrold DD Environ Microbiol; 2008 Nov; 10(11):2956-65. PubMed ID: 18393992 [TBL] [Abstract][Full Text] [Related]
11. Altitude ammonia-oxidizing bacteria and archaea in soils of Mount Everest. Zhang LM; Wang M; Prosser JI; Zheng YM; He JZ FEMS Microbiol Ecol; 2009 Nov; 70(2):52-61. PubMed ID: 19780828 [TBL] [Abstract][Full Text] [Related]
12. Spatial distribution of Bacteria and Archaea and amoA gene copy numbers throughout the water column of the Eastern Mediterranean Sea. De Corte D; Yokokawa T; Varela MM; Agogué H; Herndl GJ ISME J; 2009 Feb; 3(2):147-58. PubMed ID: 18818711 [TBL] [Abstract][Full Text] [Related]
13. Autotrophic growth of bacterial and archaeal ammonia oxidizers in freshwater sediment microcosms incubated at different temperatures. Wu Y; Ke X; Hernández M; Wang B; Dumont MG; Jia Z; Conrad R Appl Environ Microbiol; 2013 May; 79(9):3076-84. PubMed ID: 23455342 [TBL] [Abstract][Full Text] [Related]
14. Ammonium supply rate influences archaeal and bacterial ammonia oxidizers in a wetland soil vertical profile. Höfferle Š; Nicol GW; Pal L; Hacin J; Prosser JI; Mandić-Mulec I FEMS Microbiol Ecol; 2010 Nov; 74(2):302-15. PubMed ID: 21039647 [TBL] [Abstract][Full Text] [Related]
15. Simazine application inhibits nitrification and changes the ammonia-oxidizing bacterial communities in a fertilized agricultural soil. Hernández M; Jia Z; Conrad R; Seeger M FEMS Microbiol Ecol; 2011 Dec; 78(3):511-9. PubMed ID: 22066929 [TBL] [Abstract][Full Text] [Related]
16. Biases in community structures of ammonia/ammonium-oxidizing microorganisms caused by insufficient DNA extractions from Baijiang soil revealed by comparative analysis of coastal wetland sediment and rice paddy soil. Han P; Li M; Gu JD Appl Microbiol Biotechnol; 2013 Oct; 97(19):8741-56. PubMed ID: 23974369 [TBL] [Abstract][Full Text] [Related]
17. Life without light: microbial diversity and evidence of sulfur- and ammonium-based chemolithotrophy in Movile Cave. Chen Y; Wu L; Boden R; Hillebrand A; Kumaresan D; Moussard H; Baciu M; Lu Y; Colin Murrell J ISME J; 2009 Sep; 3(9):1093-104. PubMed ID: 19474813 [TBL] [Abstract][Full Text] [Related]
18. Change in ammonia-oxidizing microorganisms in enriched nitrifying activated sludge. Sonthiphand P; Limpiyakorn T Appl Microbiol Biotechnol; 2011 Feb; 89(3):843-53. PubMed ID: 20922378 [TBL] [Abstract][Full Text] [Related]
19. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Leininger S; Urich T; Schloter M; Schwark L; Qi J; Nicol GW; Prosser JI; Schuster SC; Schleper C Nature; 2006 Aug; 442(7104):806-9. PubMed ID: 16915287 [TBL] [Abstract][Full Text] [Related]
20. Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea of a Chinese upland red soil under long-term fertilization practices. He JZ; Shen JP; Zhang LM; Zhu YG; Zheng YM; Xu MG; Di H Environ Microbiol; 2007 Sep; 9(9):2364-74. PubMed ID: 17686032 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]