BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 19656625)

  • 21. Anaerobic degradation of naphthalene by the mixed bacteria under nitrate reducing conditions.
    Dou J; Liu X; Ding A
    J Hazard Mater; 2009 Jun; 165(1-3):325-31. PubMed ID: 19013017
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evidence of indigenous NAH plasmid of naphthalene degrading Pseudomonas putida PpG7 strain implicated in limonin degradation.
    Ghosh M; Ganguli A; Mallik M
    J Microbiol; 2006 Oct; 44(5):473-9. PubMed ID: 17082740
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microbial growth with vapor-phase substrate.
    Hanzel J; Thullner M; Harms H; Wick LY
    Environ Pollut; 2011 Apr; 159(4):858-64. PubMed ID: 21277662
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genome Analysis of Naphthalene-Degrading
    Kim J; Park W
    J Microbiol Biotechnol; 2018 Feb; 28(2):330-337. PubMed ID: 29169219
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of complexing ligands on the surface adsorption, internalization, and bioresponse of copper and cadmium in a soil bacterium, Pseudomonas putida.
    McLean JE; Pabst MW; Miller CD; Dimkpa CO; Anderson AJ
    Chemosphere; 2013 Apr; 91(3):374-82. PubMed ID: 23270705
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Conjugal transfer of a TOL-like plasmid and extension of the catabolic potential of Pseudomonas putida F1.
    Hallier-Soulier S; Ducrocq V; Truffaut N
    Can J Microbiol; 1999 Nov; 45(11):898-904. PubMed ID: 10588042
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Growth kinetics of Pseudomonas putida G7 on naphthalene and occurrence of naphthalene toxicity during nutrient deprivation.
    Ahn IS; Ghiorse WC; Lion LW; Shuler ML
    Biotechnol Bioeng; 1998 Sep; 59(5):587-94. PubMed ID: 10099376
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tolerance and biosorption of copper and zinc by Pseudomonas putida CZ1 isolated from metal-polluted soil.
    Chen X; Shi J; Chen Y; Xu X; Xu S; Wang Y
    Can J Microbiol; 2006 Apr; 52(4):308-16. PubMed ID: 16699581
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Comparative study of the plasmids controlling naphthalene biodegradation by a Pseudomonas culture].
    Kochetkov VV; Boronin AM
    Mikrobiologiia; 1984; 53(4):639-44. PubMed ID: 6434909
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Kinetic studies of attachment and detachment of microbial cells from soil.
    Ahn IS; Lee CH
    Environ Technol; 2003 Apr; 24(4):411-8. PubMed ID: 12755442
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Surfactant activity of a naphthalene degrading Bacillus pumilus strain isolated from oil sludge.
    Calvo C; Toledo FL; González-López J
    J Biotechnol; 2004 Apr; 109(3):255-62. PubMed ID: 15066763
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sorption of naphthalene derivatives to soils from a long-term field experiment.
    Novoszad M; Gerzabek MH; Haberhauer G; Jakusch M; Lischka H; Tunega D; Kirchmann H
    Chemosphere; 2005 Apr; 59(5):639-47. PubMed ID: 15792661
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Independent prediction of naphthalene transport and biodegradation in soil with a mathematical model.
    Ahn IS; Ghiorse WC; Lion LW; Shuler ML
    Biotechnol Bioeng; 1999 Oct; 65(1):65-75. PubMed ID: 10440672
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Rhizosphere bacteria Pseudomonas aureofaciens and Pseudomonas chlororaphis oxidizing naphthalene in the presence of arsenic].
    Sizova OI; Kochetkov VV; Boronin AM
    Prikl Biokhim Mikrobiol; 2010; 46(1):45-50. PubMed ID: 20198916
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Growth of bacteria degrading naphthalene and salicylate at low temperatures].
    Grishchenkov VG; Shishmakov DA; Kosheleva IA; Boronin AM
    Prikl Biokhim Mikrobiol; 2003; 39(3):322-8. PubMed ID: 12754831
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bioremediation of chromium contaminated soil by Pseudomonas fluorescens and indigenous microorganisms.
    Jeyalakshmi D; Kanmani S
    J Environ Sci Eng; 2008 Jan; 50(1):1-6. PubMed ID: 19192919
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Non-exhaustive extraction techniques (NEETs) for the prediction of naphthalene mineralisation in soil.
    Patterson CJ; Semple KT; Paton GI
    FEMS Microbiol Lett; 2004 Dec; 241(2):215-20. PubMed ID: 15598535
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Distribution and biodegradation of polycyclic aromatic hydrocarbons in contaminated sites of Hisar (India).
    Bishnoi K; Sain U; Kumar R; Singh R; Bishnoi NR
    Indian J Exp Biol; 2009 Mar; 47(3):210-7. PubMed ID: 19405388
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Derivation of the Tn5-induced mutants of the plasmid-containing naphthalene- and salicylate-degrading strains of Pseudomonas putida BS394(pBS216) and the inhibition of their growth on different substrates by low temperatures].
    Grishchenkov VG; Radzion AA; Medvedev PA; Balina MI; Boronin AM
    Mikrobiologiia; 2004; 73(3):430-2. PubMed ID: 15315239
    [No Abstract]   [Full Text] [Related]  

  • 40. Chemotaxis of Pseudomonas spp. to the polyaromatic hydrocarbon naphthalene.
    Grimm AC; Harwood CS
    Appl Environ Microbiol; 1997 Oct; 63(10):4111-5. PubMed ID: 9327579
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.