BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 19656625)

  • 61. Changes in fatty acid composition in Pseudomonas putida and Pseudomonas stutzeri during naphthalene degradation.
    Mrozik A; Labuzek S; Piotrowska-Seget Z
    Microbiol Res; 2005; 160(2):149-57. PubMed ID: 15881832
    [TBL] [Abstract][Full Text] [Related]  

  • 62. [Degradation characteristics of naphthalene with a Pseudomonas aeruginosa strain isolated from soil contaminated by diesel].
    Liu WC; Wu BB; Li XS; Lu DN; Liu YM
    Huan Jing Ke Xue; 2015 Feb; 36(2):712-8. PubMed ID: 26031103
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Effect of additional carbon source on naphthalene biodegradation by Pseudomonas putida G7.
    Lee K; Park JW; Ahn IS
    J Hazard Mater; 2003 Dec; 105(1-3):157-67. PubMed ID: 14623425
    [TBL] [Abstract][Full Text] [Related]  

  • 64. [Role of earthworm in degradation of soil phenanthrene by Pseudomonas putida].
    Hu M; Chen H; Tian L; Hu F; Wei ZG; Li HX
    Ying Yong Sheng Tai Xue Bao; 2008 Jan; 19(1):218-22. PubMed ID: 18419099
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Pseudomonas putida adhesion to goethite: studied by equilibrium adsorption, SEM, FTIR and ITC.
    Rong X; Chen W; Huang Q; Cai P; Liang W
    Colloids Surf B Biointerfaces; 2010 Oct; 80(1):79-85. PubMed ID: 20620892
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Fungal mycelia allow chemotactic dispersal of polycyclic aromatic hydrocarbon-degrading bacteria in water-unsaturated systems.
    Furuno S; Päzolt K; Rabe C; Neu TR; Harms H; Wick LY
    Environ Microbiol; 2010 Jun; 12(6):1391-8. PubMed ID: 19691501
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Surface hydrophobicity of petroleum hydrocarbon degrading Burkholderia strains and their interactions with NAPLs and surfaces.
    Chakraborty S; Mukherji S; Mukherji S
    Colloids Surf B Biointerfaces; 2010 Jun; 78(1):101-8. PubMed ID: 20236810
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Fate of naphthalene in laboratory-scale bioretention cells: implications for sustainable stormwater management.
    Lefevre GH; Novak PJ; Hozalski RM
    Environ Sci Technol; 2012 Jan; 46(2):995-1002. PubMed ID: 22175538
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Detection of catabolic genes in indigenous microbial consortia isolated from a diesel-contaminated soil.
    Milcic-Terzic J; Lopez-Vidal Y; Vrvic MM; Saval S
    Bioresour Technol; 2001 May; 78(1):47-54. PubMed ID: 11265787
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Biodegradation of non-desorbable naphthalene in soils.
    Park JH; Zhao X; Voice TC
    Environ Sci Technol; 2001 Jul; 35(13):2734-40. PubMed ID: 11452600
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Genetically engineered Pseudomonas putida X3 strain and its potential ability to bioremediate soil microcosms contaminated with methyl parathion and cadmium.
    Zhang R; Xu X; Chen W; Huang Q
    Appl Microbiol Biotechnol; 2016 Feb; 100(4):1987-1997. PubMed ID: 26521245
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Engineering Pseudomonas putida KT2440 for simultaneous degradation of organophosphates and pyrethroids and its application in bioremediation of soil.
    Zuo Z; Gong T; Che Y; Liu R; Xu P; Jiang H; Qiao C; Song C; Yang C
    Biodegradation; 2015 Jun; 26(3):223-33. PubMed ID: 25917649
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Effect of applying biosolids on the biodegradation of toluene and naphthalene contaminated soils.
    Chang HY; Hung JM; Wu YS; Lin YR; Lai HY; Lu CJ
    J Environ Biol; 2009 Nov; 30(6):971-5. PubMed ID: 20329392
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Biotransformation of benzothiazole derivatives by the Pseudomonas putida strain HKT554.
    El-Bassi L; Iwasaki H; Oku H; Shinzato N; Matsui T
    Chemosphere; 2010 Sep; 81(1):109-13. PubMed ID: 20692014
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Molecular characterization of Pseudomonas aeruginosa 2NR degrading naphthalene.
    Civilini M; de Bertoldi M; Tell G
    Lett Appl Microbiol; 1999 Sep; 29(3):181-6. PubMed ID: 10530039
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Effective biodegradation of pentachloronitrobenzene by a novel strain Peudomonas putida QTH3 isolated from contaminated soil.
    Wang Y; Zhang X; Wang L; Wang C; Fan W; Wang M; Wang J
    Ecotoxicol Environ Saf; 2019 Oct; 182():109463. PubMed ID: 31351328
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Enhanced tolerance to naphthalene and enhanced rhizoremediation performance for Pseudomonas putida KT2440 via the NAH7 catabolic plasmid.
    Fernández M; Niqui-Arroyo JL; Conde S; Ramos JL; Duque E
    Appl Environ Microbiol; 2012 Aug; 78(15):5104-10. PubMed ID: 22582075
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Potential of the TCE-degrading endophyte Pseudomonas putida W619-TCE to improve plant growth and reduce TCE phytotoxicity and evapotranspiration in poplar cuttings.
    Weyens N; Truyens S; Dupae J; Newman L; Taghavi S; van der Lelie D; Carleer R; Vangronsveld J
    Environ Pollut; 2010 Sep; 158(9):2915-9. PubMed ID: 20598789
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Growth kinetics of some subsurface microbial strains using naphthalene as a probe contaminant.
    Owabor CN; Ogbeide SE; Susu AA
    Environ Technol; 2011 Oct; 32(13-14):1453-62. PubMed ID: 22329135
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Carbon and hydrogen stable isotope fractionation during aerobic bacterial degradation of aromatic hydrocarbons.
    Morasch B; Richnow HH; Schink B; Vieth A; Meckenstock RU
    Appl Environ Microbiol; 2002 Oct; 68(10):5191-4. PubMed ID: 12324375
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.