BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

3021 related articles for article (PubMed ID: 19656626)

  • 1. Heavy metal (Cu, Zn, Cd and Pb) partitioning and bioaccessibility in uncontaminated and long-term contaminated soils.
    Lamb DT; Ming H; Megharaj M; Naidu R
    J Hazard Mater; 2009 Nov; 171(1-3):1150-8. PubMed ID: 19656626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Risk assessment of heavy metal contaminated soil in the vicinity of a lead/zinc mine.
    Li J; Xie ZM; Zhu YG; Naidu R
    J Environ Sci (China); 2005; 17(6):881-5. PubMed ID: 16465871
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of solution acidity and CaCl2 concentration on the removal of heavy metals from metal-contaminated rice soils.
    Kuo S; Lai MS; Lin CW
    Environ Pollut; 2006 Dec; 144(3):918-25. PubMed ID: 16603295
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redistribution of fractions of zinc, cadmium, nickel, copper, and lead in contaminated calcareous soils treated with EDTA.
    Jalali M; Khanlari ZV
    Arch Environ Contam Toxicol; 2007 Nov; 53(4):519-32. PubMed ID: 17657454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China).
    Liu H; Probst A; Liao B
    Sci Total Environ; 2005 Mar; 339(1-3):153-66. PubMed ID: 15740766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solid/solution partitioning and speciation of heavy metals in the contaminated agricultural soils around a copper mine in eastern Nanjing city, China.
    Luo XS; Zhou DM; Liu XH; Wang YJ
    J Hazard Mater; 2006 Apr; 131(1-3):19-27. PubMed ID: 16260085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Linking biosensor responses to Cd, Cu and Zn partitioning in soils.
    Dawson JJ; Campbell CD; Towers W; Cameron CM; Paton GI
    Environ Pollut; 2006 Aug; 142(3):493-500. PubMed ID: 16325972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A survey of selected heavy metal concentrations in Wisconsin dairy feeds.
    Li Y; McCrory DF; Powell JM; Saam H; Jackson-Smith D
    J Dairy Sci; 2005 Aug; 88(8):2911-22. PubMed ID: 16027206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The EDTA effect on phytoextraction of single and combined metals-contaminated soils using rainbow pink (Dianthus chinensis).
    Lai HY; Chen ZS
    Chemosphere; 2005 Aug; 60(8):1062-71. PubMed ID: 15993153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioaccumulation of heavy metals in the earthworms Lumbricus rubellus and Aporrectodea caliginosa in relation to total and available metal concentrations in field soils.
    Hobbelen PH; Koolhaas JE; van Gestel CA
    Environ Pollut; 2006 Nov; 144(2):639-46. PubMed ID: 16530310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transversal immission patterns and leachability of heavy metals in road side soils.
    Hjortenkrans DS; Bergbäck BG; Häggerud AV
    J Environ Monit; 2008 Jun; 10(6):739-46. PubMed ID: 18528541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immobilization of Zn, Cu, and Pb in contaminated soils using phosphate rock and phosphoric acid.
    Cao X; Wahbi A; Ma L; Li B; Yang Y
    J Hazard Mater; 2009 May; 164(2-3):555-64. PubMed ID: 18848390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heavy metal distribution and chemical speciation in tailings and soils around a Pb-Zn mine in Spain.
    Rodríguez L; Ruiz E; Alonso-Azcárate J; Rincón J
    J Environ Manage; 2009 Feb; 90(2):1106-16. PubMed ID: 18572301
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potentially toxic metals in ombrotrophic peat along a 400 km English-Scottish transect.
    Smith EJ; Hughes S; Lawlor AJ; Lofts S; Simon BM; Stevens PA; Stidson RT; Tipping E; Vincent CD
    Environ Pollut; 2005 Jul; 136(1):11-8. PubMed ID: 15809104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Landscape ecology of the Guanting Reservoir, Beijing, China: multivariate and geostatistical analyses of metals in soils.
    Luo W; Wang T; Lu Y; Giesy JP; Shi Y; Zheng Y; Xing Y; Wu G
    Environ Pollut; 2007 Mar; 146(2):567-76. PubMed ID: 17010487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of the transport and fate of Pb, Cd, Cr(VI) and As(V) in soil zones derived from moderately contaminated farmland in Northeast, China.
    Zhao X; Dong D; Hua X; Dong S
    J Hazard Mater; 2009 Oct; 170(2-3):570-7. PubMed ID: 19500903
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heavy metal accumulations of 24 asparagus bean cultivars grown in soil contaminated with Cd alone and with multiple metals (Cd, Pb, and Zn).
    Zhu Y; Yu H; Wang J; Fang W; Yuan J; Yang Z
    J Agric Food Chem; 2007 Feb; 55(3):1045-52. PubMed ID: 17263511
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Environmental hazard of cadmium, copper, lead and zinc in metal-contaminated soils remediated by sulfosuccinamate formulation.
    del Carmen Hernández-Soriano M; Peña A; Mingorance MD
    J Environ Monit; 2011 Oct; 13(10):2830-7. PubMed ID: 21860854
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Cd or Pb addition to Cu-contaminated soil on tissue Cu accumulation in the earthworm, Dendrobaena veneta.
    Marinussen MP; van der Zee SE; de Haan FA
    Ecotoxicol Environ Saf; 1997 Dec; 38(3):309-15. PubMed ID: 9469885
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heavy metal distribution in some French forest soils: evidence for atmospheric contamination.
    Hernandez L; Probst A; Probst JL; Ulrich E
    Sci Total Environ; 2003 Aug; 312(1-3):195-219. PubMed ID: 12873411
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 152.