BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

579 related articles for article (PubMed ID: 19656669)

  • 1. Determination of choline and derivatives with a solid-contact ion-selective electrode based on octaamide cavitand and carbon nanotubes.
    Ampurdanés J; Crespo GA; Maroto A; Sarmentero MA; Ballester P; Rius FX
    Biosens Bioelectron; 2009 Oct; 25(2):344-9. PubMed ID: 19656669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ion-selective electrodes using carbon nanotubes as ion-to-electron transducers.
    Crespo GA; Macho S; Rius FX
    Anal Chem; 2008 Feb; 80(4):1316-22. PubMed ID: 18271511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ion-selective electrodes using multi-walled carbon nanotubes as ion-to-electron transducers for the detection of perchlorate.
    Parra EJ; Crespo GA; Riu J; Ruiz A; Rius FX
    Analyst; 2009 Sep; 134(9):1905-10. PubMed ID: 19684918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An electrochemical sensor for 3,4-dihydroxyphenylacetic acid with carbon nanotubes as electronic transducer and synthetic cyclophane as recognition element.
    Yan J; Zhou Y; Yu P; Su L; Mao L; Zhang D; Zhu D
    Chem Commun (Camb); 2008 Sep; (36):4330-2. PubMed ID: 18802560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. All-solid-state potassium-selective electrode using graphene as the solid contact.
    Li F; Ye J; Zhou M; Gan S; Zhang Q; Han D; Niu L
    Analyst; 2012 Feb; 137(3):618-23. PubMed ID: 22140676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-walled carbon nanotubes with immobilised cobalt nanoparticle for modification of glassy carbon electrode: application to sensitive voltammetric determination of thioridazine.
    Shahrokhian S; Ghalkhani M; Adeli M; Amini MK
    Biosens Bioelectron; 2009 Jul; 24(11):3235-41. PubMed ID: 19443205
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel and simple strategy for selective and sensitive determination of dopamine based on the boron-doped carbon nanotubes modified electrode.
    Deng C; Chen J; Wang M; Xiao C; Nie Z; Yao S
    Biosens Bioelectron; 2009 Mar; 24(7):2091-4. PubMed ID: 19084392
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A glucose biosensor based on direct electrochemistry of glucose oxidase immobilized on nitrogen-doped carbon nanotubes.
    Deng S; Jian G; Lei J; Hu Z; Ju H
    Biosens Bioelectron; 2009 Oct; 25(2):373-7. PubMed ID: 19683424
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of bienzyme nanobiocomposite electrode using functionalized carbon nanotubes for biosensing applications.
    Jeykumari DR; Narayanan SS
    Biosens Bioelectron; 2008 Jun; 23(11):1686-93. PubMed ID: 18343650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fixure-reduce method for the synthesis of Cu2O/MWCNTs nanocomposites and its application as enzyme-free glucose sensor.
    Zhang X; Wang G; Zhang W; Wei Y; Fang B
    Biosens Bioelectron; 2009 Jul; 24(11):3395-8. PubMed ID: 19473828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Penicillin biosensor based on a capacitive field-effect structure functionalized with a dendrimer/carbon nanotube multilayer.
    Siqueira JR; Abouzar MH; Poghossian A; Zucolotto V; Oliveira ON; Schöning MJ
    Biosens Bioelectron; 2009 Oct; 25(2):497-501. PubMed ID: 19651505
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Picomolar detection of protease using peptide/single walled carbon nanotube/gold nanoparticle-modified electrode.
    Mahmoud KA; Hrapovic S; Luong JH
    ACS Nano; 2008 May; 2(5):1051-7. PubMed ID: 19206503
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Platinum nanoparticles intermediate layer in solid-state selective electrodes.
    Paczosa-Bator B; Cabaj L; Piech R; Skupień K
    Analyst; 2012 Nov; 137(22):5272-7. PubMed ID: 23042220
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of calcium ion in sap using carbon nanotube-based ion-selective electrodes.
    Hernández R; Riu J; Rius FX
    Analyst; 2010 Aug; 135(8):1979-85. PubMed ID: 20532271
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a stable cholesterol biosensor based on multi-walled carbon nanotubes-gold nanoparticles composite covered with a layer of chitosan-room-temperature ionic liquid network.
    Gopalan AI; Lee KP; Ragupathy D
    Biosens Bioelectron; 2009 Mar; 24(7):2211-7. PubMed ID: 19167880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemical properties of catechin at a single-walled carbon nanotubes-cetylramethylammonium bromide modified electrode.
    Yang LJ; Tang C; Xiong HY; Zhang XH; Wang SF
    Bioelectrochemistry; 2009 Jun; 75(2):158-62. PubMed ID: 19383571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An ionic liquid supported CeO2 nanoshuttles-carbon nanotubes composite as a platform for impedance DNA hybridization sensing.
    Zhang W; Yang T; Zhuang X; Guo Z; Jiao K
    Biosens Bioelectron; 2009 Apr; 24(8):2417-22. PubMed ID: 19167208
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The fabrication of a colloidal gold-carbon nanotubes composite film on a gold electrode and its application for the determination of cytochrome c.
    Wu Y; Hu S
    Colloids Surf B Biointerfaces; 2005 Apr; 41(4):299-304. PubMed ID: 15748825
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-walled carbon nanotubes-ionic liquid-carbon paste electrode as a super selectivity sensor: application to potentiometric monitoring of mercury ion(II).
    Khani H; Rofouei MK; Arab P; Gupta VK; Vafaei Z
    J Hazard Mater; 2010 Nov; 183(1-3):402-9. PubMed ID: 20692088
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solid-contact pH-selective electrode using multi-walled carbon nanotubes.
    Crespo GA; Gugsa D; Macho S; Rius FX
    Anal Bioanal Chem; 2009 Dec; 395(7):2371-6. PubMed ID: 19760402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.