These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
447 related articles for article (PubMed ID: 19656671)
1. Bioleaching mechanism of Co and Li from spent lithium-ion battery by the mixed culture of acidophilic sulfur-oxidizing and iron-oxidizing bacteria. Xin B; Zhang D; Zhang X; Xia Y; Wu F; Chen S; Li L Bioresour Technol; 2009 Dec; 100(24):6163-9. PubMed ID: 19656671 [TBL] [Abstract][Full Text] [Related]
2. Bioleaching of metals from spent lithium ion secondary batteries using Acidithiobacillus ferrooxidans. Mishra D; Kim DJ; Ralph DE; Ahn JG; Rhee YH Waste Manag; 2008; 28(2):333-8. PubMed ID: 17376665 [TBL] [Abstract][Full Text] [Related]
3. Mechanism underlying the bioleaching process of LiCoO Wu W; Liu X; Zhang X; Li X; Qiu Y; Zhu M; Tan W J Biosci Bioeng; 2019 Sep; 128(3):344-354. PubMed ID: 31014562 [TBL] [Abstract][Full Text] [Related]
4. Comparison of bio-dissolution of spent Ni-Cd batteries by sewage sludge using ferrous ions and elemental sulfur as substrate. Zhao L; Zhu NW; Wang XH Chemosphere; 2008 Jan; 70(6):974-81. PubMed ID: 17884135 [TBL] [Abstract][Full Text] [Related]
5. A copper-catalyzed bioleaching process for enhancement of cobalt dissolution from spent lithium-ion batteries. Zeng G; Deng X; Luo S; Luo X; Zou J J Hazard Mater; 2012 Jan; 199-200():164-9. PubMed ID: 22100221 [TBL] [Abstract][Full Text] [Related]
6. Recovery of cobalt and lithium from spent lithium ion batteries using organic citric acid as leachant. Li L; Ge J; Wu F; Chen R; Chen S; Wu B J Hazard Mater; 2010 Apr; 176(1-3):288-93. PubMed ID: 19954882 [TBL] [Abstract][Full Text] [Related]
7. Extraction of manganese from electrolytic manganese residue by bioleaching. Xin B; Chen B; Duan N; Zhou C Bioresour Technol; 2011 Jan; 102(2):1683-7. PubMed ID: 21050747 [TBL] [Abstract][Full Text] [Related]
8. Analysis of reasons for decline of bioleaching efficiency of spent Zn-Mn batteries at high pulp densities and exploration measure for improving performance. Xin B; Jiang W; Li X; Zhang K; Liu C; Wang R; Wang Y Bioresour Technol; 2012 May; 112():186-92. PubMed ID: 22437046 [TBL] [Abstract][Full Text] [Related]
9. A highly efficient process to enhance the bioleaching of spent lithium-ion batteries by bifunctional pyrite combined with elemental sulfur. Liu Z; Liao X; Zhang Y; Li S; Ye M; Gan Q; Fang X; Mo Z; Huang Y; Liang Z; Dai W; Sun S J Environ Manage; 2024 Feb; 351():119954. PubMed ID: 38169252 [TBL] [Abstract][Full Text] [Related]
11. A combined recovery process of metals in spent lithium-ion batteries. Li J; Shi P; Wang Z; Chen Y; Chang CC Chemosphere; 2009 Nov; 77(8):1132-6. PubMed ID: 19775724 [TBL] [Abstract][Full Text] [Related]
12. Dissolution kinetics of spent petroleum catalyst using sulfur oxidizing acidophilic microorganisms. Mishra D; Ahn JG; Kim DJ; Roychaudhury G; Ralph DE J Hazard Mater; 2009 Aug; 167(1-3):1231-6. PubMed ID: 19286311 [TBL] [Abstract][Full Text] [Related]
13. Sulfur-oxidizing bacteria dominate the microbial diversity shift during the pyrite and low-grade pyrolusite bioleaching process. Han Y; Ma X; Zhao W; Chang Y; Zhang X; Wang X; Wang J; Huang Z J Biosci Bioeng; 2013 Oct; 116(4):465-71. PubMed ID: 23673133 [TBL] [Abstract][Full Text] [Related]
14. Process controls for improving bioleaching performance of both Li and Co from spent lithium ion batteries at high pulp density and its thermodynamics and kinetics exploration. Niu Z; Zou Y; Xin B; Chen S; Liu C; Li Y Chemosphere; 2014 Aug; 109():92-8. PubMed ID: 24873712 [TBL] [Abstract][Full Text] [Related]
15. Bioleaching of realgar by Acidithiobacillus ferrooxidans using ferrous iron and elemental sulfur as the sole and mixed energy sources. Chen P; Yan L; Leng F; Nan W; Yue X; Zheng Y; Feng N; Li H Bioresour Technol; 2011 Feb; 102(3):3260-7. PubMed ID: 21146407 [TBL] [Abstract][Full Text] [Related]
16. Bioleaching of zinc and manganese from spent Zn-Mn batteries and mechanism exploration. Xin B; Jiang W; Aslam H; Zhang K; Liu C; Wang R; Wang Y Bioresour Technol; 2012 Feb; 106():147-53. PubMed ID: 22204887 [TBL] [Abstract][Full Text] [Related]
17. Bioleaching of heavy metals from contaminated sediment by indigenous sulfur-oxidizing bacteria in an air-lift bioreactor: effects of sulfur concentration. Chen SY; Lin JG Water Res; 2004; 38(14-15):3205-14. PubMed ID: 15276736 [TBL] [Abstract][Full Text] [Related]
18. Transformation of iron sulfide to greigite by nitrite produced by oil field bacteria. Lin S; Krause F; Voordouw G Appl Microbiol Biotechnol; 2009 May; 83(2):369-76. PubMed ID: 19290520 [TBL] [Abstract][Full Text] [Related]
19. A novel closed-loop biotechnology for recovery of cobalt from a lithium-ion battery active cathode material. Pakostova E; Graves J; Latvyte E; Maddalena G; Horsfall L Microbiology (Reading); 2024 Jul; 170(7):. PubMed ID: 39016549 [TBL] [Abstract][Full Text] [Related]
20. Feasibility of reduced iron species for promoting Li and Co recovery from spent LiCoO Liao X; Ye M; Liang J; Guan Z; Li S; Deng Y; Gan Q; Liu Z; Fang X; Sun S Sci Total Environ; 2022 Jul; 830():154577. PubMed ID: 35304146 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]