These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
447 related articles for article (PubMed ID: 19656671)
21. Mobilisation of arsenic from a mining soil in batch slurry experiments under bio-oxidative conditions. Bayard R; Chatain V; Gachet C; Troadec A; Gourdon R Water Res; 2006 Mar; 40(6):1240-1248. PubMed ID: 16529789 [TBL] [Abstract][Full Text] [Related]
22. Enhancement of metal bioleaching from contaminated sediment using silver ion. Chen SY; Lin JG J Hazard Mater; 2009 Jan; 161(2-3):893-9. PubMed ID: 18514400 [TBL] [Abstract][Full Text] [Related]
23. Bioleaching review part A: progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation. Rohwerder T; Gehrke T; Kinzler K; Sand W Appl Microbiol Biotechnol; 2003 Dec; 63(3):239-48. PubMed ID: 14566432 [TBL] [Abstract][Full Text] [Related]
24. Removal of Cr from tannery sludge by indigenous sulfur-oxidizing bacteria. Fang D; Jin CJ; Zhou LX J Environ Sci Health A Tox Hazard Subst Environ Eng; 2007 Nov; 42(13):2065-9. PubMed ID: 17990170 [TBL] [Abstract][Full Text] [Related]
25. Bioleaching of spent hydro-processing catalyst using acidophilic bacteria and its kinetics aspect. Mishra D; Kim DJ; Ralph DE; Ahn JG; Rhee YH J Hazard Mater; 2008 Apr; 152(3):1082-91. PubMed ID: 17825485 [TBL] [Abstract][Full Text] [Related]
26. Bioleaching mechanism of Zn, Pb, In, Ag, Cd and As from Pb/Zn smelting slag by autotrophic bacteria. Wang J; Huang Q; Li T; Xin B; Chen S; Guo X; Liu C; Li Y J Environ Manage; 2015 Aug; 159():11-17. PubMed ID: 25996622 [TBL] [Abstract][Full Text] [Related]
27. Effects of ferric ion on bioleaching of heavy metals from contaminated sediment. Chen SY; Lin JG; Lee CY Water Sci Technol; 2003; 48(8):151-8. PubMed ID: 14682582 [TBL] [Abstract][Full Text] [Related]
28. Sulfur oxidation activities of pure and mixed thermophiles and sulfur speciation in bioleaching of chalcopyrite. Zhu W; Xia JL; Yang Y; Nie ZY; Zheng L; Ma CY; Zhang RY; Peng AA; Tang L; Qiu GZ Bioresour Technol; 2011 Feb; 102(4):3877-82. PubMed ID: 21194927 [TBL] [Abstract][Full Text] [Related]
29. Bioleaching of spent Ni-Cd batteries by continuous flow system: effect of hydraulic retention time and process load. Zhao L; Yang D; Zhu NW J Hazard Mater; 2008 Dec; 160(2-3):648-54. PubMed ID: 18430515 [TBL] [Abstract][Full Text] [Related]
30. Characterization and identification of an iron-oxidizing, Leptospirillum-like bacterium, present in the high sulfate leaching solution of a commercial bioleaching plant. Romero J; Yañez C; Vásquez M; Moore ER; Espejo RT Res Microbiol; 2003 Jun; 154(5):353-9. PubMed ID: 12837511 [TBL] [Abstract][Full Text] [Related]
31. Investigation of energy gene expressions and community structures of free and attached acidophilic bacteria in chalcopyrite bioleaching. Zhu J; Jiao W; Li Q; Liu X; Qin W; Qiu G; Hu Y; Chai L J Ind Microbiol Biotechnol; 2012 Dec; 39(12):1833-40. PubMed ID: 22968225 [TBL] [Abstract][Full Text] [Related]
32. Sewage sludge bioleaching by indigenous sulfur-oxidizing bacteria: effects of ratio of substrate dosage to solid content. Zhang P; Zhu Y; Zhang G; Zou S; Zeng G; Wu Z Bioresour Technol; 2009 Feb; 100(3):1394-8. PubMed ID: 18945613 [TBL] [Abstract][Full Text] [Related]
33. A sustainable process for the recovery of valuable metals from spent lithium-ion batteries. Fan B; Chen X; Zhou T; Zhang J; Xu B Waste Manag Res; 2016 May; 34(5):474-81. PubMed ID: 26951340 [TBL] [Abstract][Full Text] [Related]
34. Removal of Cr from tannery sludge by bioleaching method. Zhou SG; Zhou LX; Wang SM; Fang D J Environ Sci (China); 2006; 18(5):885-90. PubMed ID: 17278742 [TBL] [Abstract][Full Text] [Related]
35. Use of mild organic acid reagents to recover the Co and Li from spent Li-ion batteries. Nayaka GP; Pai KV; Manjanna J; Keny SJ Waste Manag; 2016 May; 51():234-238. PubMed ID: 26709049 [TBL] [Abstract][Full Text] [Related]
36. Bioleaching of arsenopyrite by mixed cultures of iron-oxidizing and sulfur-oxidizing microorganisms. Deng S; Gu G; Wu Z; Xu X Chemosphere; 2017 Oct; 185():403-411. PubMed ID: 28710989 [TBL] [Abstract][Full Text] [Related]
37. Simultaneously enhance iron/sulfur metabolism in column bioleaching of chalcocite by pyrite and sulfur oxidizers based on joint utilization of waste resource. Feng S; Yin Y; Yin Z; Zhang H; Zhu D; Tong Y; Yang H Environ Res; 2021 Mar; 194():110702. PubMed ID: 33400950 [TBL] [Abstract][Full Text] [Related]
38. Microbiological and geochemical dynamics in simulated-heap leaching of a polymetallic sulfide ore. Wakeman K; Auvinen H; Johnson DB Biotechnol Bioeng; 2008 Nov; 101(4):739-50. PubMed ID: 18496880 [TBL] [Abstract][Full Text] [Related]
39. An environmental benign process for cobalt and lithium recovery from spent lithium-ion batteries by mechanochemical approach. Wang MM; Zhang CC; Zhang FS Waste Manag; 2016 May; 51():239-244. PubMed ID: 26965214 [TBL] [Abstract][Full Text] [Related]
40. Multi-scale analysis of acidophilic microbial consortium biofilm's tolerance of lithium and cobalt ions in bioleaching. Shi H; Mao X; Yang F; Zhu M; Tan N; Tan W; Gu T; Zhang X J Hazard Mater; 2024 Aug; 474():134764. PubMed ID: 38824773 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]