These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
243 related articles for article (PubMed ID: 19656789)
1. Lift production in the hovering hummingbird. Warrick DR; Tobalske BW; Powers DR Proc Biol Sci; 2009 Nov; 276(1674):3747-52. PubMed ID: 19656789 [TBL] [Abstract][Full Text] [Related]
2. Three-dimensional flow and lift characteristics of a hovering ruby-throated hummingbird. Song J; Luo H; Hedrick TL J R Soc Interface; 2014 Sep; 11(98):20140541. PubMed ID: 25008082 [TBL] [Abstract][Full Text] [Related]
3. Computational investigation of wing-body interaction and its lift enhancement effect in hummingbird forward flight. Wang J; Ren Y; Li C; Dong H Bioinspir Biomim; 2019 Jun; 14(4):046010. PubMed ID: 31096194 [TBL] [Abstract][Full Text] [Related]
4. How oscillating aerodynamic forces explain the timbre of the hummingbird's hum and other animals in flapping flight. Hightower BJ; Wijnings PW; Scholte R; Ingersoll R; Chin DD; Nguyen J; Shorr D; Lentink D Elife; 2021 Mar; 10():. PubMed ID: 33724182 [TBL] [Abstract][Full Text] [Related]
5. The effect of aspect ratio on the leading-edge vortex over an insect-like flapping wing. Phillips N; Knowles K; Bomphrey RJ Bioinspir Biomim; 2015 Oct; 10(5):056020. PubMed ID: 26451802 [TBL] [Abstract][Full Text] [Related]
6. Leading edge vortex in a slow-flying passerine. Muijres FT; Johansson LC; Hedenström A Biol Lett; 2012 Aug; 8(4):554-7. PubMed ID: 22417792 [TBL] [Abstract][Full Text] [Related]
7. Structure of the vortex wake in hovering Anna's hummingbirds (Calypte anna). Wolf M; Ortega-Jimenez VM; Dudley R Proc Biol Sci; 2013 Dec; 280(1773):20132391. PubMed ID: 24174113 [TBL] [Abstract][Full Text] [Related]
8. Ground effect on the aerodynamics of three-dimensional hovering wings. Lu H; Lua KB; Lee YJ; Lim TT; Yeo KS Bioinspir Biomim; 2016 Oct; 11(6):066003. PubMed ID: 27780156 [TBL] [Abstract][Full Text] [Related]
9. Flow development and leading edge vorticity in bristled insect wings. O'Callaghan F; Lehmann FO J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2023 Mar; 209(2):219-229. PubMed ID: 36810678 [TBL] [Abstract][Full Text] [Related]
10. Hummingbird wing efficacy depends on aspect ratio and compares with helicopter rotors. Kruyt JW; Quicazán-Rubio EM; van Heijst GF; Altshuler DL; Lentink D J R Soc Interface; 2014 Oct; 11(99):. PubMed ID: 25079868 [TBL] [Abstract][Full Text] [Related]
12. Wing-wake interaction: comparison of 2D and 3D flapping wings in hover flight. Lee YJ; Lua KB Bioinspir Biomim; 2018 Sep; 13(6):066003. PubMed ID: 30132443 [TBL] [Abstract][Full Text] [Related]
13. Aerodynamic force generation and power requirements in forward flight in a fruit fly with modeled wing motion. Sun M; Wu JH J Exp Biol; 2003 Sep; 206(Pt 17):3065-83. PubMed ID: 12878674 [TBL] [Abstract][Full Text] [Related]
14. Vortex wake, downwash distribution, aerodynamic performance and wingbeat kinematics in slow-flying pied flycatchers. Muijres FT; Bowlin MS; Johansson LC; Hedenström A J R Soc Interface; 2012 Feb; 9(67):292-303. PubMed ID: 21676971 [TBL] [Abstract][Full Text] [Related]
18. Hovering hummingbird wing aerodynamics during the annual cycle. I. Complete wing. Achache Y; Sapir N; Elimelech Y R Soc Open Sci; 2017 Aug; 4(8):170183. PubMed ID: 28878971 [TBL] [Abstract][Full Text] [Related]
19. The role of the leading edge vortex in lift augmentation of steadily revolving wings: a change in perspective. Nabawy MRA; Crowther WJ J R Soc Interface; 2017 Jul; 14(132):. PubMed ID: 28747395 [TBL] [Abstract][Full Text] [Related]
20. Force production and flow structure of the leading edge vortex on flapping wings at high and low Reynolds numbers. Birch JM; Dickson WB; Dickinson MH J Exp Biol; 2004 Mar; 207(Pt 7):1063-72. PubMed ID: 14978049 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]