BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 19656809)

  • 1. Vimentin intermediate filaments as a template for silica nanotube preparation.
    Gohara R; Liu D; Nakashima K; Takasaki Y; Ando S
    J Biochem; 2009 Nov; 146(5):627-31. PubMed ID: 19656809
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of the in vitro co-assembly process of the intermediate filament proteins vimentin and desmin: mixed polymers at all stages of assembly.
    Wickert U; Mücke N; Wedig T; Müller SA; Aebi U; Herrmann H
    Eur J Cell Biol; 2005 Mar; 84(2-3):379-91. PubMed ID: 15819415
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of the morphology of intermediate filaments adsorbed to different solid supports.
    Mücke N; Kirmse R; Wedig T; Leterrier JF; Kreplak L
    J Struct Biol; 2005 Jun; 150(3):268-76. PubMed ID: 15890275
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peptide amphiphile nanofibers template and catalyze silica nanotube formation.
    Yuwono VM; Hartgerink JD
    Langmuir; 2007 Apr; 23(9):5033-8. PubMed ID: 17373830
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring the mechanical properties of single vimentin intermediate filaments by atomic force microscopy.
    Guzmán C; Jeney S; Kreplak L; Kasas S; Kulik AJ; Aebi U; Forró L
    J Mol Biol; 2006 Jul; 360(3):623-30. PubMed ID: 16765985
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural analysis of vimentin and keratin intermediate filaments by cryo-electron tomography.
    Norlén L; Masich S; Goldie KN; Hoenger A
    Exp Cell Res; 2007 Jun; 313(10):2217-27. PubMed ID: 17499715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Morphological analysis of glutaraldehyde-fixed vimentin intermediate filaments and assembly-intermediates by atomic force microscopy.
    Ando S; Nakao K; Gohara R; Takasaki Y; Suehiro K; Oishi Y
    Biochim Biophys Acta; 2004 Oct; 1702(1):53-65. PubMed ID: 15450850
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing of the structural stability of vimentin and desmin-type intermediate filaments with Ca2+-activated proteinase, thrombin and lysine-specific endoproteinase Lys-C.
    Perides G; Kühn S; Scherbarth A; Traub P
    Eur J Cell Biol; 1987 Jun; 43(3):450-8. PubMed ID: 3040412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electron microscopy of intermediate filaments: teaming up with atomic force and confocal laser scanning microscopy.
    Kreplak L; Richter K; Aebi U; Herrmann H
    Methods Cell Biol; 2008; 88():273-97. PubMed ID: 18617039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional cryo-electron microscopy on intermediate filaments.
    Kirmse R; Bouchet-Marquis C; Page C; Hoenger A
    Methods Cell Biol; 2010; 96():565-89. PubMed ID: 20869538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exploring the mechanical behavior of single intermediate filaments.
    Kreplak L; Bär H; Leterrier JF; Herrmann H; Aebi U
    J Mol Biol; 2005 Dec; 354(3):569-77. PubMed ID: 16257415
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assembly and structure of calcium-induced thick vimentin filaments.
    Hofmann I; Herrmann H; Franke WW
    Eur J Cell Biol; 1991 Dec; 56(2):328-41. PubMed ID: 1802717
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binding of fluorescence- and gold-labeled oligodeoxyribonucleotides to cytoplasmic intermediate filaments in epithelial and fibroblast cells.
    Hartig R; Huang Y; Janetzko A; Shoeman R; Grüb S; Traub P
    Exp Cell Res; 1997 May; 233(1):169-86. PubMed ID: 9184086
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Templating silica nanostructures on rationally designed self-assembled peptide fibers.
    Holmström SC; King PJ; Ryadnov MG; Butler MF; Mann S; Woolfson DN
    Langmuir; 2008 Oct; 24(20):11778-83. PubMed ID: 18759469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Creation of double silica nanotubes by using crown-appended cholesterol nanotubes.
    Jung JH; Lee SH; Yoo JS; Yoshida K; Shimizu T; Shinkai S
    Chemistry; 2003 Nov; 9(21):5307-13. PubMed ID: 14613140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of distinct early assembly units of different intermediate filament proteins.
    Herrmann H; Häner M; Brettel M; Ku NO; Aebi U
    J Mol Biol; 1999 Mar; 286(5):1403-20. PubMed ID: 10064706
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecularly imprinted sol-gel nanotubes membrane for biochemical separations.
    Yang HH; Zhang SQ; Yang W; Chen XL; Zhuang ZX; Xu JG; Wang XR
    J Am Chem Soc; 2004 Apr; 126(13):4054-5. PubMed ID: 15053564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-catalytic sol-gel synergetic replication of uniform silica nanotubes using an amino acid amphiphile dynamically growing fibers as template.
    Lei S; Zhang J; Wang J; Huang J
    Langmuir; 2010 Mar; 26(6):4288-95. PubMed ID: 20000799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Site-specific phosphorylation induces disassembly of vimentin filaments in vitro.
    Inagaki M; Nishi Y; Nishizawa K; Matsuyama M; Sato C
    Nature; 1987 Aug 13-19; 328(6131):649-52. PubMed ID: 3039376
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular template approach for evolution of conducting polymer nanostructures: tracing the role of morphology on conductivity and solid state ordering.
    Antony MJ; Jayakannan M
    J Phys Chem B; 2010 Jan; 114(3):1314-24. PubMed ID: 20050618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.