These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 19657012)

  • 1. Evaluation of fundamental hypotheses underlying constrained mixture models of arterial growth and remodelling.
    Valentín A; Humphrey JD
    Philos Trans A Math Phys Eng Sci; 2009 Sep; 367(1902):3585-606. PubMed ID: 19657012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complementary vasoactivity and matrix remodelling in arterial adaptations to altered flow and pressure.
    Valentín A; Cardamone L; Baek S; Humphrey JD
    J R Soc Interface; 2009 Mar; 6(32):293-306. PubMed ID: 18647735
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Parameter sensitivity study of a constrained mixture model of arterial growth and remodeling.
    Valentín A; Humphrey JD
    J Biomech Eng; 2009 Oct; 131(10):101006. PubMed ID: 19831476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A 2D constrained mixture model for arterial adaptations to large changes in flow, pressure and axial stretch.
    Gleason RL; Humphrey JD
    Math Med Biol; 2005 Dec; 22(4):347-69. PubMed ID: 16319121
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Origin of axial prestretch and residual stress in arteries.
    Cardamone L; Valentín A; Eberth JF; Humphrey JD
    Biomech Model Mechanobiol; 2009 Dec; 8(6):431-46. PubMed ID: 19123012
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A microstructurally motivated model of arterial wall mechanics with mechanobiological implications.
    Bellini C; Ferruzzi J; Roccabianca S; Di Martino ES; Humphrey JD
    Ann Biomed Eng; 2014 Mar; 42(3):488-502. PubMed ID: 24197802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel chemo-mechano-biological model of arterial tissue growth and remodelling.
    Aparício P; Thompson MS; Watton PN
    J Biomech; 2016 Aug; 49(12):2321-30. PubMed ID: 27184922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Constitutive modelling of arteries considering fibre recruitment and three-dimensional fibre distribution.
    Weisbecker H; Unterberger MJ; Holzapfel GA
    J R Soc Interface; 2015 Apr; 12(105):. PubMed ID: 25788541
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A biochemomechanical model of collagen turnover in arterial adaptations to hemodynamic loading.
    Tilahun HG; Mullagura HN; Humphrey JD; Baek S
    Biomech Model Mechanobiol; 2023 Dec; 22(6):2063-2082. PubMed ID: 37505299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Freeze-thaw induced biomechanical changes in arteries: role of collagen matrix and smooth muscle cells.
    Venkatasubramanian RT; Wolkers WF; Shenoi MM; Barocas VH; Lafontaine D; Soule CL; Iaizzo PA; Bischof JC
    Ann Biomed Eng; 2010 Mar; 38(3):694-706. PubMed ID: 20108044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical study on the effects of pressure-induced remodeling on geometry and mechanical non-homogeneity of conduit arteries.
    Rachev A; Gleason RL
    Biomech Model Mechanobiol; 2011 Feb; 10(1):79-93. PubMed ID: 20473704
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Growth and remodeling in a thick-walled artery model: effects of spatial variations in wall constituents.
    Alford PW; Humphrey JD; Taber LA
    Biomech Model Mechanobiol; 2008 Aug; 7(4):245-62. PubMed ID: 17786493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A constituent-based model of age-related changes in conduit arteries.
    Tsamis A; Rachev A; Stergiopulos N
    Am J Physiol Heart Circ Physiol; 2011 Oct; 301(4):H1286-301. PubMed ID: 21724865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling effects of axial extension on arterial growth and remodeling.
    Valentín A; Humphrey JD
    Med Biol Eng Comput; 2009 Sep; 47(9):979-87. PubMed ID: 19649667
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A constrained mixture model for arterial adaptations to a sustained step change in blood flow.
    Humphrey JD; Rajagopal KR
    Biomech Model Mechanobiol; 2003 Nov; 2(2):109-26. PubMed ID: 14586812
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A multi-scale mechanobiological model of in-stent restenosis: deciphering the role of matrix metalloproteinase and extracellular matrix changes.
    Zahedmanesh H; Van Oosterwyck H; Lally C
    Comput Methods Biomech Biomed Engin; 2014; 17(8):813-28. PubMed ID: 22967148
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A structure-based constitutive model of arterial tissue considering individual natural configurations of elastin and collagen.
    Rachev A; Shazly T
    J Mech Behav Biomed Mater; 2019 Feb; 90():61-72. PubMed ID: 30352323
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth and residual stresses of arterial walls.
    Ren JS
    J Theor Biol; 2013 Nov; 337():80-8. PubMed ID: 23968891
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Remodeling of developing and mature arteries: endothelium, smooth muscle, and matrix.
    Langille BL
    J Cardiovasc Pharmacol; 1993; 21 Suppl 1():S11-7. PubMed ID: 7681126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A homogenized constrained mixture (and mechanical analog) model for growth and remodeling of soft tissue.
    Cyron CJ; Aydin RC; Humphrey JD
    Biomech Model Mechanobiol; 2016 Dec; 15(6):1389-1403. PubMed ID: 27008346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.