These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

375 related articles for article (PubMed ID: 19657701)

  • 1. Time series analysis of particle tracking data for molecular motion on the cell membrane.
    Ying W; Huerta G; Steinberg S; Zúñiga M
    Bull Math Biol; 2009 Nov; 71(8):1967-2024. PubMed ID: 19657701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insights into cell membrane microdomain organization from live cell single particle tracking of the IgE high affinity receptor FcϵRI of mast cells.
    Espinoza FA; Wester MJ; Oliver JM; Wilson BS; Andrews NL; Lidke DS; Steinberg SL
    Bull Math Biol; 2012 Aug; 74(8):1857-911. PubMed ID: 22733211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Confined lateral diffusion of membrane receptors as studied by single particle tracking (nanovid microscopy). Effects of calcium-induced differentiation in cultured epithelial cells.
    Kusumi A; Sako Y; Yamamoto M
    Biophys J; 1993 Nov; 65(5):2021-40. PubMed ID: 8298032
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatic detection of diffusion modes within biological membranes using back-propagation neural network.
    Dosset P; Rassam P; Fernandez L; Espenel C; Rubinstein E; Margeat E; Milhiet PE
    BMC Bioinformatics; 2016 May; 17(1):197. PubMed ID: 27141816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anomalous diffusion of major histocompatibility complex class I molecules on HeLa cells determined by single particle tracking.
    Smith PR; Morrison IE; Wilson KM; Fernández N; Cherry RJ
    Biophys J; 1999 Jun; 76(6):3331-44. PubMed ID: 10354459
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms underlying anomalous diffusion in the plasma membrane.
    Krapf D
    Curr Top Membr; 2015; 75():167-207. PubMed ID: 26015283
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SMTracker: a tool for quantitative analysis, exploration and visualization of single-molecule tracking data reveals highly dynamic binding of B. subtilis global repressor AbrB throughout the genome.
    Rösch TC; Oviedo-Bocanegra LM; Fritz G; Graumann PL
    Sci Rep; 2018 Oct; 8(1):15747. PubMed ID: 30356068
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Short class I major histocompatibility complex cytoplasmic tails differing in charge detect arbiters of lateral diffusion in the plasma membrane.
    Capps GG; Pine S; Edidin M; Zúñiga MC
    Biophys J; 2004 May; 86(5):2896-909. PubMed ID: 15111406
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of molecular diffusion by first-passage time variance identifies the size of confinement zones.
    Rajani V; Carrero G; Golan DE; de Vries G; Cairo CW
    Biophys J; 2011 Mar; 100(6):1463-72. PubMed ID: 21402028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel computational framework for D(t) from Fluorescence Recovery after Photobleaching data reveals various anomalous diffusion types in live cell membranes.
    Kang M; Day CA; Kenworthy AK
    Traffic; 2019 Nov; 20(11):867-880. PubMed ID: 31452286
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tracking and Analyzing the Brownian Motion of Nano-objects Inside Hollow Core Fibers.
    Förster R; Weidlich S; Nissen M; Wieduwilt T; Kobelke J; Goldfain AM; Chiang TK; Garmann RF; Manoharan VN; Lahini Y; Schmidt MA
    ACS Sens; 2020 Mar; 5(3):879-886. PubMed ID: 32103665
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-particle tracking: models of directed transport.
    Saxton MJ
    Biophys J; 1994 Nov; 67(5):2110-9. PubMed ID: 7858148
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimal fits of diffusion constants from single-time data points of Brownian trajectories.
    Boyer D; Dean DS; Mejía-Monasterio C; Oshanin G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 1):060101. PubMed ID: 23367881
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Constrained diffusion or immobile fraction on cell surfaces: a new interpretation.
    Feder TJ; Brust-Mascher I; Slattery JP; Baird B; Webb WW
    Biophys J; 1996 Jun; 70(6):2767-73. PubMed ID: 8744314
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lowering the barriers to random walks on the cell surface.
    Tang Q; Edidin M
    Biophys J; 2003 Jan; 84(1):400-7. PubMed ID: 12524293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of diffusion constants from single molecular measurement without explicit tracking.
    Teraguchi S; Kumagai Y
    BMC Syst Biol; 2018 Apr; 12(Suppl 1):15. PubMed ID: 29671388
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Devil Is in the Details: What Do We Really Track in Single-Particle Tracking Experiments of Diffusion in Biological Membranes?
    Gurtovenko AA; Javanainen M; Lolicato F; Vattulainen I
    J Phys Chem Lett; 2019 Mar; 10(5):1005-1011. PubMed ID: 30768280
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoscopic substructures of raft-mimetic liquid-ordered membrane domains revealed by high-speed single-particle tracking.
    Wu HM; Lin YH; Yen TC; Hsieh CL
    Sci Rep; 2016 Feb; 6():20542. PubMed ID: 26861908
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Superdiffusive motion of membrane-targeting C2 domains.
    Campagnola G; Nepal K; Schroder BW; Peersen OB; Krapf D
    Sci Rep; 2015 Dec; 5():17721. PubMed ID: 26639944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anomalous diffusion, aging, and nonergodicity of scaled Brownian motion with fractional Gaussian noise: overview of related experimental observations and models.
    Wang W; Metzler R; Cherstvy AG
    Phys Chem Chem Phys; 2022 Aug; 24(31):18482-18504. PubMed ID: 35838015
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.