These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 19657850)
1. FDTD simulations to assess the performance of CFMA-434 applicators for superficial hyperthermia. Kok HP; De Greef M; Correia D; Vörding PJ; Van Stam G; Gelvich EA; Bel A; Crezee J Int J Hyperthermia; 2009; 25(6):462-76. PubMed ID: 19657850 [TBL] [Abstract][Full Text] [Related]
2. SAR deposition by curved CFMA-434 applicators for superficial hyperthermia: Measurements and simulations. Petra Kok H; Correia D; De Greef M; Van Stam G; Bel A; Crezee J Int J Hyperthermia; 2010; 26(2):171-84. PubMed ID: 20146571 [TBL] [Abstract][Full Text] [Related]
3. Assessment of the performance characteristics of a prototype 12-element capacitive contact flexible microstrip applicator (CFMA-12) for superficial hyperthermia. Lee WM; Gelvich EA; van der Baan P; Mazokhin VN; van Rhoon GC Int J Hyperthermia; 2004 Sep; 20(6):607-24. PubMed ID: 15370817 [TBL] [Abstract][Full Text] [Related]
4. Characteristics and performance evaluation of the capacitive Contact Flexible Microstrip Applicator operating at 70 MHz for external hyperthermia. van Wieringen N; Wiersma J; Zum Vörde Sive Vörding P; Oldenborg S; Gelvich EA; Mazokhin VN; van Dijk JD; Crezee J Int J Hyperthermia; 2009 Nov; 25(7):542-53. PubMed ID: 19848617 [TBL] [Abstract][Full Text] [Related]
5. Body conformal antennas for superficial hyperthermia: the impact of bending contact flexible microstrip applicators on their electromagnetic behavior. Correia D; Kok HP; de Greef M; Bel A; van Wieringen N; Crezee J IEEE Trans Biomed Eng; 2009 Dec; 56(12):2917-26. PubMed ID: 19695983 [TBL] [Abstract][Full Text] [Related]
6. SAR characteristics of three types of Contact Flexible Microstrip Applicators for superficial hyperthermia. Lamaitre G; Van Dijk JD; Gelvich EA; Wiersma J; Schneider CJ Int J Hyperthermia; 1996; 12(2):255-69. PubMed ID: 8926393 [TBL] [Abstract][Full Text] [Related]
7. Contact flexible microstrip applicators (CFMA) in a range from microwaves up to short waves. Gelvich EA; Mazokhin VN IEEE Trans Biomed Eng; 2002 Sep; 49(9):1015-23. PubMed ID: 12214873 [TBL] [Abstract][Full Text] [Related]
8. [Measures of specific absorption rate (SAR) in microwave hyperthermic oncology and the influence of the dynamic bolus on clinical practice]. Marini P; Guiot C; Baiotto B; Gabriele P Radiol Med; 2001 Sep; 102(3):159-67. PubMed ID: 11677459 [TBL] [Abstract][Full Text] [Related]
9. Improving locoregional hyperthermia delivery using the 3-D controlled AMC-8 phased array hyperthermia system: a preclinical study. Crezee J; Van Haaren PM; Westendorp H; De Greef M; Kok HP; Wiersma J; Van Stam G; Sijbrands J; Zum Vörde Sive Vörding P; Van Dijk JD; Hulshof MC; Bel A Int J Hyperthermia; 2009 Nov; 25(7):581-92. PubMed ID: 19848620 [TBL] [Abstract][Full Text] [Related]
10. SAR characteristics of the Sigma-60-Ellipse applicator. Fatehi D; van Rhoon GC Int J Hyperthermia; 2008 Jun; 24(4):347-56. PubMed ID: 18465419 [TBL] [Abstract][Full Text] [Related]
11. Quantitative validation of the 3D SAR profile of hyperthermia applicators using the gamma method. de Bruijne M; Samaras T; Chavannes N; van Rhoon GC Phys Med Biol; 2007 Jun; 52(11):3075-88. PubMed ID: 17505090 [TBL] [Abstract][Full Text] [Related]
12. The impact of the waveguide aperture size of the 3D 70 MHz AMC-8 locoregional hyperthermia system on tumour coverage. Kok HP; de Greef M; Wiersma J; Bel A; Crezee J Phys Med Biol; 2010 Sep; 55(17):4899-916. PubMed ID: 20679701 [TBL] [Abstract][Full Text] [Related]
14. A comparison of the heating characteristics of capacitive and radiative superficial hyperthermia. Kok HP; Crezee J Int J Hyperthermia; 2017 Jun; 33(4):378-386. PubMed ID: 27951733 [TBL] [Abstract][Full Text] [Related]
15. Computer-aided design of two-dimensional electric-type hyperthermia applicators using the finite-difference time-domain method. Shaw JA; Durney CH; Christensen DA IEEE Trans Biomed Eng; 1991 Sep; 38(9):861-70. PubMed ID: 1743734 [TBL] [Abstract][Full Text] [Related]
16. Theoretical investigation of measurement procedures for the quality assurance of superficial hyperthermia applicators. Samaras T; van Rhoon GC; Sahalos JN Int J Hyperthermia; 2002; 18(5):416-25. PubMed ID: 12227928 [TBL] [Abstract][Full Text] [Related]
17. FDTD electromagnetic and thermal analysis of interstitial hyperthermic applicators. Finite-difference time-domain. Gentili GB; Leoncini M; Trembly BS; Schweizer SE IEEE Trans Biomed Eng; 1995 Oct; 42(10):973-80. PubMed ID: 8582727 [TBL] [Abstract][Full Text] [Related]
18. Comparison of two different 70 MHz applicators for large extremity lesions: simulation and application. Kok HP; de Greef M; van Wieringen N; Correia D; Hulshof MC; Zum Vörde Sive Vörding PJ; Sijbrands J; Bel A; Crezee J Int J Hyperthermia; 2010; 26(4):376-88. PubMed ID: 20230249 [TBL] [Abstract][Full Text] [Related]
19. Electric-field distribution near rectangular microstrip radiators for hyperthermia heating: theory versus experiment in water. Underwood HR; Peterson AF; Magin RL IEEE Trans Biomed Eng; 1992 Feb; 39(2):146-53. PubMed ID: 1612617 [TBL] [Abstract][Full Text] [Related]
20. Microstrip-antenna design for hyperthermia treatment of superficial tumors. Montecchia F IEEE Trans Biomed Eng; 1992 Jun; 39(6):580-8. PubMed ID: 1601439 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]