These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 19658089)

  • 1. Spectral clustering in peptidomics studies helps to unravel modification profile of biologically active peptides and enhances peptide identification rate.
    Menschaert G; Vandekerckhove TT; Landuyt B; Hayakawa E; Schoofs L; Luyten W; Van Criekinge W
    Proteomics; 2009 Sep; 9(18):4381-8. PubMed ID: 19658089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A spectral clustering approach to MS/MS identification of post-translational modifications.
    Falkner JA; Falkner JW; Yocum AK; Andrews PC
    J Proteome Res; 2008 Nov; 7(11):4614-22. PubMed ID: 18800783
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectral clustering in peptidomics studies allows homology searching and modification profiling: HomClus, a versatile tool.
    Menschaert G; Hayakawa E; Schoofs L; Van Criekinge W; Baggerman G
    J Proteome Res; 2012 May; 11(5):2774-85. PubMed ID: 22409323
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An accurate and efficient algorithm for Peptide and ptm identification by tandem mass spectrometry.
    Ning K; Ng HK; Leong HW
    Genome Inform; 2007; 19():119-30. PubMed ID: 18546510
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of novel modifications by unrestrictive search of tandem mass spectra.
    Na S; Paek E
    J Proteome Res; 2009 Oct; 8(10):4418-27. PubMed ID: 19658439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Linking mass spectrometric imaging and traditional peptidomics: a validation in the obese mouse model.
    Minerva L; Boonen K; Menschaert G; Landuyt B; Baggerman G; Arckens L
    Anal Chem; 2011 Oct; 83(20):7682-91. PubMed ID: 21913672
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strategy for comprehensive identification of post-translational modifications in cellular proteins, including low abundant modifications: application to glyceraldehyde-3-phosphate dehydrogenase.
    Seo J; Jeong J; Kim YM; Hwang N; Paek E; Lee KJ
    J Proteome Res; 2008 Feb; 7(2):587-602. PubMed ID: 18183946
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validation of endogenous peptide identifications using a database of tandem mass spectra.
    Fälth M; Svensson M; Nilsson A; Sköld K; Fenyö D; Andren PE
    J Proteome Res; 2008 Jul; 7(7):3049-53. PubMed ID: 18549260
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Support vector machines for improved peptide identification from tandem mass spectrometry database search.
    Webb-Robertson BJ
    Methods Mol Biol; 2009; 492():453-60. PubMed ID: 19241051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of ion trap tandem mass spectra variability on the identification of peptides.
    Venable JD; Yates JR
    Anal Chem; 2004 May; 76(10):2928-37. PubMed ID: 15144207
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large-scale unrestricted identification of post-translation modifications using tandem mass spectrometry.
    Havilio M; Wool A
    Anal Chem; 2007 Feb; 79(4):1362-8. PubMed ID: 17297935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving peptide identification using an empirical peptide retention time database.
    Sun W; Zhang L; Yang R; Shao C; Zhang Z; Gao Y
    Rapid Commun Mass Spectrom; 2009 Jan; 23(1):109-18. PubMed ID: 19065623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neuropeptides of the islets of Langerhans: a peptidomics study.
    Boonen K; Baggerman G; D'Hertog W; Husson SJ; Overbergh L; Mathieu C; Schoofs L
    Gen Comp Endocrinol; 2007; 152(2-3):231-41. PubMed ID: 17559849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MASPIC: intensity-based tandem mass spectrometry scoring scheme that improves peptide identification at high confidence.
    Narasimhan C; Tabb DL; Verberkmoes NC; Thompson MR; Hettich RL; Uberbacher EC
    Anal Chem; 2005 Dec; 77(23):7581-93. PubMed ID: 16316165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving the identification rate of endogenous peptides using electron transfer dissociation and collision-induced dissociation.
    Hayakawa E; Menschaert G; De Bock PJ; Luyten W; Gevaert K; Baggerman G; Schoofs L
    J Proteome Res; 2013 Dec; 12(12):5410-21. PubMed ID: 24032530
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Charger: combination of signal processing and statistical learning algorithms for precursor charge-state determination from electron-transfer dissociation spectra.
    Sadygov RG; Hao Z; Huhmer AF
    Anal Chem; 2008 Jan; 80(2):376-86. PubMed ID: 18081262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unrestrictive identification of post-translational modifications through peptide mass spectrometry.
    Tanner S; Pevzner PA; Bafna V
    Nat Protoc; 2006; 1(1):67-72. PubMed ID: 17406213
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oscore: a combined score to reduce false negative rates for peptide identification in tandem mass spectrometry analysis.
    Shao C; Sun W; Li F; Yang R; Zhang L; Gao Y
    J Mass Spectrom; 2009 Jan; 44(1):25-31. PubMed ID: 18698557
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PeaksPTM: Mass spectrometry-based identification of peptides with unspecified modifications.
    Han X; He L; Xin L; Shan B; Ma B
    J Proteome Res; 2011 Jul; 10(7):2930-6. PubMed ID: 21609001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A label-free nano-liquid chromatography-mass spectrometry approach for quantitative serum peptidomics in Crohn's disease patients.
    Nanni P; Levander F; Roda G; Caponi A; James P; Roda A
    J Chromatogr B Analyt Technol Biomed Life Sci; 2009 Oct; 877(27):3127-36. PubMed ID: 19683480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.