These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 19658147)

  • 21. In vitro selection of conformational probes for riboswitches.
    Mayer G; Famulok M
    Methods Mol Biol; 2009; 540():291-300. PubMed ID: 19381568
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thiamine pyrophosphate riboswitches are targets for the antimicrobial compound pyrithiamine.
    Sudarsan N; Cohen-Chalamish S; Nakamura S; Emilsson GM; Breaker RR
    Chem Biol; 2005 Dec; 12(12):1325-35. PubMed ID: 16356850
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Screening and selection of artificial riboswitches.
    Harbaugh SV; Martin JA; Weinstein J; Ingram G; Kelley-Loughnane N
    Methods; 2018 Jul; 143():77-89. PubMed ID: 29778645
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enzymatic probing analysis of an engineered riboswitch reveals multiple off conformations.
    Muranaka N; Sharma V; Yokobayashi Y
    Nucleosides Nucleotides Nucleic Acids; 2011 Sep; 30(9):696-705. PubMed ID: 21902472
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Riboswitch control of gene expression in plants by splicing and alternative 3' end processing of mRNAs.
    Wachter A; Tunc-Ozdemir M; Grove BC; Green PJ; Shintani DK; Breaker RR
    Plant Cell; 2007 Nov; 19(11):3437-50. PubMed ID: 17993623
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An in vitro selection for small molecule induced switching RNA molecules.
    Martini L; Ellington AD; Mansy SS
    Methods; 2016 Aug; 106():51-7. PubMed ID: 26899430
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of novel ligands for thiamine pyrophosphate (TPP) riboswitches.
    Cressina E; Chen L; Moulin M; Leeper FJ; Abell C; Smith AG
    Biochem Soc Trans; 2011 Apr; 39(2):652-7. PubMed ID: 21428956
    [TBL] [Abstract][Full Text] [Related]  

  • 28.
    Ogawa A; Itoh Y
    ACS Synth Biol; 2020 Oct; 9(10):2648-2655. PubMed ID: 33017145
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Regulation of the thiamine pyrophosphate (TPP)-sensing riboswitch in NMT1 mRNA from Neurospora crassa.
    Gong S; Du C; Wang Y
    FEBS Lett; 2020 Feb; 594(4):625-635. PubMed ID: 31664711
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Eukaryotic TPP riboswitch regulation of alternative splicing involving long-distance base pairing.
    Li S; Breaker RR
    Nucleic Acids Res; 2013 Mar; 41(5):3022-31. PubMed ID: 23376932
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ligand-induced folding of the thiM TPP riboswitch investigated by a structure-based fluorescence spectroscopic approach.
    Lang K; Rieder R; Micura R
    Nucleic Acids Res; 2007; 35(16):5370-8. PubMed ID: 17693433
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantitative and predictive model of kinetic regulation by E. coli TPP riboswitches.
    Guedich S; Puffer-Enders B; Baltzinger M; Hoffmann G; Da Veiga C; Jossinet F; Thore S; Bec G; Ennifar E; Burnouf D; Dumas P
    RNA Biol; 2016; 13(4):373-90. PubMed ID: 26932506
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Switching the light on plant riboswitches.
    Bocobza SE; Aharoni A
    Trends Plant Sci; 2008 Oct; 13(10):526-33. PubMed ID: 18778966
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The dynamic nature of RNA as key to understanding riboswitch mechanisms.
    Haller A; Soulière MF; Micura R
    Acc Chem Res; 2011 Dec; 44(12):1339-48. PubMed ID: 21678902
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A high-throughput screen for synthetic riboswitches reveals mechanistic insights into their function.
    Lynch SA; Desai SK; Sajja HK; Gallivan JP
    Chem Biol; 2007 Feb; 14(2):173-84. PubMed ID: 17317571
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Engineering complex riboswitch regulation by dual genetic selection.
    Sharma V; Nomura Y; Yokobayashi Y
    J Am Chem Soc; 2008 Dec; 130(48):16310-5. PubMed ID: 18998646
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genetic screens and selections for small molecules based on a synthetic riboswitch that activates protein translation.
    Desai SK; Gallivan JP
    J Am Chem Soc; 2004 Oct; 126(41):13247-54. PubMed ID: 15479078
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Aptazyme-Based Riboswitches and Logic Gates in Mammalian Cells.
    Nomura Y; Yokobayashi Y
    Methods Mol Biol; 2021; 2323():213-220. PubMed ID: 34086283
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In vivo screening for aptazyme-based bacterial riboswitches.
    Rehm C; Hartig JS
    Methods Mol Biol; 2014; 1111():237-49. PubMed ID: 24549624
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Thiamine metabolism genes in diatoms are not regulated by thiamine despite the presence of predicted riboswitches.
    Llavero-Pasquina M; Geisler K; Holzer A; Mehrshahi P; Mendoza-Ochoa GI; Newsad SA; Davey MP; Smith AG
    New Phytol; 2022 Sep; 235(5):1853-1867. PubMed ID: 35653609
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.