These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 1965837)

  • 1. Cyclic AMP-dependent phosphorylation of fructose-1,6-bisphosphatase and other proteins in the yeast Candida maltosa.
    Hofmann KH; Polnisch E
    J Basic Microbiol; 1990; 30(8):555-9. PubMed ID: 1965837
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catabolite inactivation, cyclic AMP and protein phosphorylation in the methylotrophic yeast Hansenula polymorpha.
    Hofmann KH; Polnisch E
    Antonie Van Leeuwenhoek; 1991 Jul; 60(1):49-54. PubMed ID: 1724594
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cyclic AMP, fructose-2,6-bisphosphate and catabolite inactivation of enzymes in the hydrocarbon-assimilating yeast Candida maltosa.
    Polnisch E; Hofmann K
    Arch Microbiol; 1989; 152(3):269-72. PubMed ID: 2549901
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fructose 2,6-bisphosphate activates the cAMP-dependent phosphorylation of yeast fructose-1,6-bisphosphatase in vitro.
    Gancedo JM; Mazón MJ; Gancedo C
    J Biol Chem; 1983 May; 258(10):5998-9. PubMed ID: 6304022
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catabolite inactivation of fructose 1,6-bisphosphatase and cytoplasmic malate dehydrogenase in yeast.
    Funaguma T; Toyoda Y; Sy J
    Biochem Biophys Res Commun; 1985 Jul; 130(1):467-71. PubMed ID: 2992470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphorylation and inactivation of yeast fructose-1,6-bisphosphatase by cyclic AMP-dependent protein kinase from yeast.
    Pohlig G; Holzer H
    J Biol Chem; 1985 Nov; 260(25):13818-23. PubMed ID: 2997182
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cyclic AMP and fructose-2,6-bisphosphate stimulated in vitro phosphorylation of yeast fructose-1,6-bisphosphatase.
    Pohlig G; Wingender-Drissen R; Noda T; Holzer H
    Biochem Biophys Res Commun; 1983 Aug; 115(1):317-24. PubMed ID: 6311207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphorylation in vivo of yeast (Saccharomyces cerevisiae) fructose-1,6-bisphosphatase at the cyclic AMP-dependent site.
    Rittenhouse J; Moberly L; Marcus F
    J Biol Chem; 1987 Jul; 262(21):10114-9. PubMed ID: 3038868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteolytic catabolite inactivation in Saccharomyces cerevisiae.
    Holzer H
    Revis Biol Celular; 1989; 21():305-19. PubMed ID: 2561496
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fructose-bisphosphatase as a substrate of cyclic AMP-dependent protein kinase.
    Hosey MM; Marcus F
    Proc Natl Acad Sci U S A; 1981 Jan; 78(1):91-4. PubMed ID: 6264456
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Activities of gluconeogenetic enzymes in the yeast Candida maltosa during growth on glucose or ethanol].
    Hofmann KH; Polnisch E
    J Basic Microbiol; 1990; 30(5):333-6. PubMed ID: 2170619
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substrate specificity of the phosphorylated fructose-1,6-bisphosphatase dephosphorylating protein phosphatase from Saccharomyces cerevisiae.
    Manhart A; Holzer H
    Yeast; 1988 Sep; 4(3):227-32. PubMed ID: 2849261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fructose-1,6-bisphosphatase from rat liver. A comparison of the kinetics of the unphosphorylated enzyme and the enzyme phosphorylated by cyclic AMP-dependent protein kinase.
    Ekdahl KN; Ekman P
    J Biol Chem; 1985 Nov; 260(26):14173-9. PubMed ID: 2997199
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphorylated fructose-1,6-bisphosphatase dephosphorylating protein phosphatase from Saccharomyces cerevisiae.
    Horn D; Holzer H
    J Biol Chem; 1987 Feb; 262(5):2056-61. PubMed ID: 3029061
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies on rapid reversible and non-reversible inactivation of fructose-1,6-bisphosphatase and malate dehydrogenase in wild-type and glycolytic block mutants of Saccharomyces cerevisiae.
    Entian KD; Dröll L; Mecke D
    Arch Microbiol; 1983 Jun; 134(3):187-192. PubMed ID: 6311131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo and in vitro phosphorylation of rat liver fructose-1,6-bisphosphatase.
    Riou JP; Claus TH; Flockhart DA; Corbin JD; Pilkis SJ
    Proc Natl Acad Sci U S A; 1977 Oct; 74(10):4615-9. PubMed ID: 200922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How does glucose initiate proteolysis of yeast fructose-1,6-bisphosphatase?
    Holzer H; Purwin C
    Biomed Biochim Acta; 1986; 45(11-12):1657-63. PubMed ID: 3034238
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amino acid sequence of the COOH-terminal region of fructose-1,6-bisphosphatases in relation to cyclic AMP-dependent phosphorylation.
    Rittenhouse J; Chatterjee T; Marcus F; Reardon I; Heinrikson RL
    J Biol Chem; 1983 Jun; 258(12):7648-52. PubMed ID: 6305949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteins of newly isolated mutants and the amino-terminal proline are essential for ubiquitin-proteasome-catalyzed catabolite degradation of fructose-1,6-bisphosphatase of Saccharomyces cerevisiae.
    Hämmerle M; Bauer J; Rose M; Szallies A; Thumm M; Düsterhus S; Mecke D; Entian KD; Wolf DH
    J Biol Chem; 1998 Sep; 273(39):25000-5. PubMed ID: 9737955
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Degradation of the gluconeogenic enzymes fructose-1,6-bisphosphatase and malate dehydrogenase is mediated by distinct proteolytic pathways and signaling events.
    Hung GC; Brown CR; Wolfe AB; Liu J; Chiang HL
    J Biol Chem; 2004 Nov; 279(47):49138-50. PubMed ID: 15358789
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.