These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 19658386)

  • 1. The core/shell composite nanowires produced by self-scrolling carbon nanotubes onto copper nanowires.
    Yan K; Xue Q; Xia D; Chen H; Xie J; Dong M
    ACS Nano; 2009 Aug; 3(8):2235-40. PubMed ID: 19658386
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of carbon nanoscrolls from monolayer graphene.
    Xia D; Xue Q; Xie J; Chen H; Lv C; Besenbacher F; Dong M
    Small; 2010 Sep; 6(18):2010-9. PubMed ID: 20715074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis and alignment of silver nanorods and nanowires and the formation of Pt, Pd, and core/shell structures by galvanic exchange directly on surfaces.
    Sławiński GW; Zamborini FP
    Langmuir; 2007 Sep; 23(20):10357-65. PubMed ID: 17760472
    [TBL] [Abstract][Full Text] [Related]  

  • 4. "Lens" effect in directed assembly of nanowires on gradient molecular patterns.
    Myung S; Im J; Huang L; Rao SG; Kim T; Lee DJ; Hong S
    J Phys Chem B; 2006 Jun; 110(21):10217-9. PubMed ID: 16722718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical study of core-shell composite structure made of carbon nanoring and aluminum nanowire.
    Chen W; Li H; He Y
    Phys Chem Chem Phys; 2014 May; 16(17):7907-12. PubMed ID: 24647403
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solution-based growth and structural characterization of homo- and heterobranched semiconductor nanowires.
    Dong A; Tang R; Buhro WE
    J Am Chem Soc; 2007 Oct; 129(40):12254-62. PubMed ID: 17880075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of Sn doped CuO nanotubes from core-shell Cu/SnO(2) nanowires by the Kirkendall effect.
    Lai M; Mubeen S; Chartuprayoon N; Mulchandani A; Deshusses MA; Myung NV
    Nanotechnology; 2010 Jul; 21(29):295601. PubMed ID: 20585175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coaxial nickel/poly(p-phenylene vinylene) nanowires as luminescent building blocks manipulated magnetically.
    Lorcy JM; Massuyeau F; Moreau P; Chauvet O; Faulques E; Wéry J; Duvail JL
    Nanotechnology; 2009 Oct; 20(40):405601. PubMed ID: 19738299
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Color-tuned highly fluorescent organic nanowires/nanofabrics: easy massive fabrication and molecular structural origin.
    An BK; Gihm SH; Chung JW; Park CR; Kwon SK; Park SY
    J Am Chem Soc; 2009 Mar; 131(11):3950-7. PubMed ID: 19249839
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energetics investigation on encapsulation of protein/peptide drugs in carbon nanotubes.
    Chen Q; Wang Q; Liu YC; Wu T; Kang Y; Moore JD; Gubbins KE
    J Chem Phys; 2009 Jul; 131(1):015101. PubMed ID: 19586122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Light absorption mechanism in single c-Si (core)/a-Si (shell) coaxial nanowires.
    Liu WF; Oh JI; Shen WZ
    Nanotechnology; 2011 Mar; 22(12):125705. PubMed ID: 21317497
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlled positioning of carbon nanotubes by dielectrophoresis: insights into the solvent and substrate role.
    Duchamp M; Lee K; Dwir B; Seo JW; Kapon E; Forró L; Magrez A
    ACS Nano; 2010 Jan; 4(1):279-84. PubMed ID: 20055475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-metallization of photocatalytic porphyrin nanotubes.
    Wang Z; Medforth CJ; Shelnutt JA
    J Am Chem Soc; 2004 Dec; 126(51):16720-1. PubMed ID: 15612699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solution-based II-VI core/shell nanowire heterostructures.
    Goebl JA; Black RW; Puthussery J; Giblin J; Kosel TH; Kuno M
    J Am Chem Soc; 2008 Nov; 130(44):14822-33. PubMed ID: 18847191
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions between polymers and carbon nanotubes: a molecular dynamics study.
    Yang M; Koutsos V; Zaiser M
    J Phys Chem B; 2005 May; 109(20):10009-14. PubMed ID: 16852210
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanowire-in-microtube structured core/shell fibers via multifluidic coaxial electrospinning.
    Chen H; Wang N; Di J; Zhao Y; Song Y; Jiang L
    Langmuir; 2010 Jul; 26(13):11291-6. PubMed ID: 20337483
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transmission electron microscopy in situ fabrication of ZnO/Al2O3 composite nanotubes by electron-beam-irradiation-induced local etching of ZnO/Al2O3 core/shell nanowires.
    Yang Y; Scholz R; Berger A; Kim DS; Knez M; Hesse D; Gösele U; Zacharias M
    Small; 2008 Dec; 4(12):2112-7. PubMed ID: 18989863
    [No Abstract]   [Full Text] [Related]  

  • 18. Resistive-switching crossbar memory based on Ni-NiO core-shell nanowires.
    Cagli C; Nardi F; Harteneck B; Tan Z; Zhang Y; Ielmini D
    Small; 2011 Oct; 7(20):2899-905. PubMed ID: 21874659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Superlattice nanowire pattern transfer (SNAP).
    Heath JR
    Acc Chem Res; 2008 Dec; 41(12):1609-17. PubMed ID: 18598059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase-controlled growth of metastable Fe5Si3 nanowires by a vapor transport method.
    Varadwaj KS; Seo K; In J; Mohanty P; Park J; Kim B
    J Am Chem Soc; 2007 Jul; 129(27):8594-9. PubMed ID: 17567133
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.