BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 19658395)

  • 1. Structural characterization of the conformational change in calbindin-D28k upon calcium binding using differential surface modification analyzed by mass spectrometry.
    Hobbs CA; Deterding LJ; Perera L; Bobay BG; Thompson RJ; Darden TA; Cavanagh J; Tomer KB
    Biochemistry; 2009 Sep; 48(36):8603-14. PubMed ID: 19658395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fragment complementation of calbindin D28k.
    Berggård T; Thulin E; Akerfeldt KS; Linse S
    Protein Sci; 2000 Nov; 9(11):2094-108. PubMed ID: 11152121
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A functional and degenerate pair of EF hands contains the very high affinity calcium-binding site of calbindin-D28K.
    Gross MD; Gosnell M; Tsarbopoulos A; Hunziker W
    J Biol Chem; 1993 Oct; 268(28):20917-22. PubMed ID: 8407926
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of Ca(2+) binding on the conformation of calbindin D(28K): a nuclear magnetic resonance and microelectrospray mass spectrometry study.
    Venters RA; Benson LM; Craig TA; Bagu J; Paul KH; Kordys DR; Thompson R; Naylor S; Kumar R; Cavanagh J
    Anal Biochem; 2003 Jun; 317(1):59-66. PubMed ID: 12729601
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and biochemical characterization of neuronal calretinin domain I-II (residues 1-100). Comparison to homologous calbindin D28k domain I-II (residues 1-93).
    Palczewska M; Groves P; Ambrus A; Kaleta A; Kövér KE; Batta G; Kuźnicki J
    Eur J Biochem; 2001 Dec; 268(23):6229-37. PubMed ID: 11733019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of calcium-binding sites in rat brain calbindin D28K by electrospray ionization mass spectrometry.
    Veenstra TD; Johnson KL; Tomlinson AJ; Naylor S; Kumar R
    Biochemistry; 1997 Mar; 36(12):3535-42. PubMed ID: 9132004
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On-line sample clean-up and chromatography coupled with electrospray ionization mass spectrometry to characterize the primary sequence and disulfide bond content of recombinant calcium binding proteins.
    Johnson KL; Veenstra TD; Londowski JM; Tomlinson AJ; Kumar R; Naylor S
    Biomed Chromatogr; 1999 Feb; 13(1):37-45. PubMed ID: 10191942
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solution structure of rat apo-S100B(beta beta) as determined by NMR spectroscopy.
    Drohat AC; Amburgey JC; Abildgaard F; Starich MR; Baldisseri D; Weber DJ
    Biochemistry; 1996 Sep; 35(36):11577-88. PubMed ID: 8794737
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of metal-binding sites in rat brain calcium-binding protein.
    Veenstra TD; Gross MD; Hunziker W; Kumar R
    J Biol Chem; 1995 Dec; 270(51):30353-8. PubMed ID: 8530460
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calbindin D28k exhibits properties characteristic of a Ca2+ sensor.
    Berggård T; Miron S; Onnerfjord P; Thulin E; Akerfeldt KS; Enghild JJ; Akke M; Linse S
    J Biol Chem; 2002 May; 277(19):16662-72. PubMed ID: 11872749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calbindin D28K interacts with Ran-binding protein M: identification of interacting domains by NMR spectroscopy.
    Lutz W; Frank EM; Craig TA; Thompson R; Venters RA; Kojetin D; Cavanagh J; Kumar R
    Biochem Biophys Res Commun; 2003 Apr; 303(4):1186-92. PubMed ID: 12684061
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NMR investigation and secondary structure of domains I and II of rat brain calbindin D28k (1-93).
    Klaus W; Grzesiek S; Labhardt AM; Buchwald P; Hunziker W; Gross MD; Kallick DA
    Eur J Biochem; 1999 Jun; 262(3):933-8. PubMed ID: 10411658
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The X-ray structure of human calbindin-D28K: an improved model.
    Noble JW; Almalki R; Roe SM; Wagner A; Duman R; Atack JR
    Acta Crystallogr D Struct Biol; 2018 Oct; 74(Pt 10):1008-1014. PubMed ID: 30289411
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Redox sensitive cysteine residues in calbindin D28k are structurally and functionally important.
    Cedervall T; Berggård T; Borek V; Thulin E; Linse S; Akerfeldt KS
    Biochemistry; 2005 Jan; 44(2):684-93. PubMed ID: 15641794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calcium binding by chick calretinin and rat calbindin D28k synthesised in bacteria.
    Cheung WT; Richards DE; Rogers JH
    Eur J Biochem; 1993 Jul; 215(2):401-10. PubMed ID: 8344307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An extended hydrophobic core induces EF-hand swapping.
    Håkansson M; Svensson A; Fast J; Linse S
    Protein Sci; 2001 May; 10(5):927-33. PubMed ID: 11316872
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular basis for co-operativity in Ca2+ binding to calbindin D9k. 1H nuclear magnetic resonance studies of (Cd2+)1-bovine calbindin D9k.
    Akke M; Forsén S; Chazin WJ
    J Mol Biol; 1991 Jul; 220(1):173-89. PubMed ID: 2067016
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relating form and function of EF-hand calcium binding proteins.
    Chazin WJ
    Acc Chem Res; 2011 Mar; 44(3):171-9. PubMed ID: 21314091
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solution structure of (Cd2+)1-calbindin D9k reveals details of the stepwise structural changes along the Apo-->(Ca2+)II1-->(Ca2+)I,II2 binding pathway.
    Akke M; Forsén S; Chazin WJ
    J Mol Biol; 1995 Sep; 252(1):102-21. PubMed ID: 7666423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ca(2+)- and H(+)-dependent conformational changes of calbindin D(28k).
    Berggård T; Silow M; Thulin E; Linse S
    Biochemistry; 2000 Jun; 39(23):6864-73. PubMed ID: 10841767
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.