These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Comparison of two proteomics techniques used to identify proteins regulated by gibberellin in rice. Komatsu S; Zang X; Tanaka N J Proteome Res; 2006 Feb; 5(2):270-6. PubMed ID: 16457592 [TBL] [Abstract][Full Text] [Related]
23. Comparative proteomics analysis of differentially expressed proteins in soybean cell wall during flooding stress. Komatsu S; Kobayashi Y; Nishizawa K; Nanjo Y; Furukawa K Amino Acids; 2010 Nov; 39(5):1435-49. PubMed ID: 20458513 [TBL] [Abstract][Full Text] [Related]
24. An improved strategy for selective and efficient enrichment of integral plasma membrane proteins of mycobacteria. Mattow J; Siejak F; Hagens K; Schmidt F; Koehler C; Treumann A; Schaible UE; Kaufmann SH Proteomics; 2007 May; 7(10):1687-701. PubMed ID: 17436267 [TBL] [Abstract][Full Text] [Related]
25. Generally detected proteins in comparative proteomics--a matter of cellular stress response? Wang P; Bouwman FG; Mariman EC Proteomics; 2009 Jun; 9(11):2955-66. PubMed ID: 19415655 [TBL] [Abstract][Full Text] [Related]
26. Proteomic analysis of salt-responsive ubiquitin-related proteins in rice roots. Liu CW; Hsu YK; Cheng YH; Yen HC; Wu YP; Wang CS; Lai CC Rapid Commun Mass Spectrom; 2012 Aug; 26(15):1649-60. PubMed ID: 22730086 [TBL] [Abstract][Full Text] [Related]
27. Subcellular proteomics of cell differentiation: quantitative analysis of the plasma membrane proteome of Caco-2 cells. Pshezhetsky AV; Fedjaev M; Ashmarina L; Mazur A; Budman L; Sinnett D; Labuda D; Beaulieu JF; Ménard D; Nifant'ev I; Levy E Proteomics; 2007 Jun; 7(13):2201-15. PubMed ID: 17549793 [TBL] [Abstract][Full Text] [Related]
28. Comparison of alternative analytical techniques for the characterisation of the human serum proteome in HUPO Plasma Proteome Project. Li X; Gong Y; Wang Y; Wu S; Cai Y; He P; Lu Z; Ying W; Zhang Y; Jiao L; He H; Zhang Z; He F; Zhao X; Qian X Proteomics; 2005 Aug; 5(13):3423-41. PubMed ID: 16052619 [TBL] [Abstract][Full Text] [Related]
29. Modification-specific proteomics of plasma membrane proteins: identification and characterization of glycosylphosphatidylinositol-anchored proteins released upon phospholipase D treatment. Elortza F; Mohammed S; Bunkenborg J; Foster LJ; Nühse TS; Brodbeck U; Peck SC; Jensen ON J Proteome Res; 2006 Apr; 5(4):935-43. PubMed ID: 16602701 [TBL] [Abstract][Full Text] [Related]
30. Proteomic analysis of soybean hypocotyl during recovery after flooding stress. Khan MN; Sakata K; Komatsu S J Proteomics; 2015 May; 121():15-27. PubMed ID: 25818724 [TBL] [Abstract][Full Text] [Related]
31. Identification of indicator proteins associated with flooding injury in soybean seedlings using label-free quantitative proteomics. Nanjo Y; Nakamura T; Komatsu S J Proteome Res; 2013 Nov; 12(11):4785-98. PubMed ID: 23659366 [TBL] [Abstract][Full Text] [Related]
32. Mapping the proteome of poplar and application to the discovery of drought-stress responsive proteins. Plomion C; Lalanne C; Claverol S; Meddour H; Kohler A; Bogeat-Triboulot MB; Barre A; Le Provost G; Dumazet H; Jacob D; Bastien C; Dreyer E; de Daruvar A; Guehl JM; Schmitter JM; Martin F; Bonneu M Proteomics; 2006 Dec; 6(24):6509-27. PubMed ID: 17163438 [TBL] [Abstract][Full Text] [Related]
33. Quantification of membrane and membrane-bound proteins in normal and malignant breast cancer cells isolated from the same patient with primary breast carcinoma. Liang X; Zhao J; Hajivandi M; Wu R; Tao J; Amshey JW; Pope RM J Proteome Res; 2006 Oct; 5(10):2632-41. PubMed ID: 17022634 [TBL] [Abstract][Full Text] [Related]
34. Proteomics techniques for the development of flood tolerant crops. Komatsu S; Hiraga S; Yanagawa Y J Proteome Res; 2012 Jan; 11(1):68-78. PubMed ID: 22029422 [TBL] [Abstract][Full Text] [Related]
35. Gel-free/label-free proteomic analysis of root tip of soybean over time under flooding and drought stresses. Wang X; Oh M; Sakata K; Komatsu S J Proteomics; 2016 Jan; 130():42-55. PubMed ID: 26376099 [TBL] [Abstract][Full Text] [Related]
36. Label-free quantitative proteomic analysis of abscisic acid effect in early-stage soybean under flooding. Komatsu S; Han C; Nanjo Y; Altaf-Un-Nahar M; Wang K; He D; Yang P J Proteome Res; 2013 Nov; 12(11):4769-84. PubMed ID: 23808807 [TBL] [Abstract][Full Text] [Related]
37. Cell wall proteome of wheat roots under flooding stress using gel-based and LC MS/MS-based proteomics approaches. Kong FJ; Oyanagi A; Komatsu S Biochim Biophys Acta; 2010 Jan; 1804(1):124-36. PubMed ID: 19786127 [TBL] [Abstract][Full Text] [Related]
38. Tissue-specific defense and thermo-adaptive mechanisms of soybean seedlings under heat stress revealed by proteomic approach. Ahsan N; Donnart T; Nouri MZ; Komatsu S J Proteome Res; 2010 Aug; 9(8):4189-204. PubMed ID: 20540562 [TBL] [Abstract][Full Text] [Related]
39. Proteomic and metabolomic analyses of soybean root tips under flooding stress. Komatsu S; Nakamura T; Sugimoto Y; Sakamoto K Protein Pept Lett; 2014; 21(9):865-84. PubMed ID: 24654851 [TBL] [Abstract][Full Text] [Related]
40. Quantitative proteomics reveals that peroxidases play key roles in post-flooding recovery in soybean roots. Khan MN; Sakata K; Hiraga S; Komatsu S J Proteome Res; 2014 Dec; 13(12):5812-28. PubMed ID: 25284625 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]