These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

451 related articles for article (PubMed ID: 19658470)

  • 21. Vapor condensation onto a non-volatile liquid drop.
    Inci L; Bowles RK
    J Chem Phys; 2013 Dec; 139(21):214703. PubMed ID: 24320390
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Curvature-dependent surface tension of a growing droplet.
    Moody MP; Attard P
    Phys Rev Lett; 2003 Aug; 91(5):056104. PubMed ID: 12906610
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An aggregation-volume-bias Monte Carlo investigation on the condensation of a Lennard-Jones vapor below the triple point and crystal nucleation in cluster systems: an in-depth evaluation of the classical nucleation theory.
    Chen B; Kim H; Keasler SJ; Nellas RB
    J Phys Chem B; 2008 Apr; 112(13):4067-78. PubMed ID: 18335920
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Logarithmic finite-size effects on interfacial free energies: phenomenological theory and Monte Carlo studies.
    Schmitz F; Virnau P; Binder K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012128. PubMed ID: 25122272
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Performance of some nucleation theories with a nonsharp droplet-vapor interface.
    Napari I; Julin J; Vehkamäki H
    J Chem Phys; 2010 Oct; 133(15):154503. PubMed ID: 20969399
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of the interfacial area on the equilibrium properties of Lennard-Jones fluid.
    Janecek J
    J Chem Phys; 2009 Sep; 131(12):124513. PubMed ID: 19791900
    [TBL] [Abstract][Full Text] [Related]  

  • 27. On the interfacial thermodynamics of nanoscale droplets and bubbles.
    Corti DS; Kerr KJ; Torabi K
    J Chem Phys; 2011 Jul; 135(2):024701. PubMed ID: 21766963
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nucleation and growth of droplets at a liquid-gas interface.
    Nepomnyashchy AA; Golovin AA; Tikhomirova AE; Volpert VA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 1):021605. PubMed ID: 17025444
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phase behavior of a confined nanodroplet in the grand-canonical ensemble: the reverse liquid-vapor transition.
    Lutsko JF; Laidet J; Grosfils P
    J Phys Condens Matter; 2010 Jan; 22(3):035101. PubMed ID: 21386277
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Radial density distribution of the metastable supersaturated vapor via restricted ensemble simulations.
    Nie C; Marlow WH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jul; 78(1 Pt 1):012101. PubMed ID: 18763998
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Density functional theory of inhomogeneous liquids. I. The liquid-vapor interface in Lennard-Jones fluids.
    Lutsko JF
    J Chem Phys; 2007 Aug; 127(5):054701. PubMed ID: 17688351
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The free energy of the metastable supersaturated vapor via restricted ensemble simulations.
    Nie C; Geng J; Marlow WH
    J Chem Phys; 2007 Oct; 127(15):154505. PubMed ID: 17949171
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Homogeneous nucleation at high supersaturation and heterogeneous nucleation on microscopic wettable particles: A hybrid thermodynamic/density-functional theory.
    Bykov TV; Zeng XC
    J Chem Phys; 2006 Oct; 125(14):144515. PubMed ID: 17042617
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nucleation and droplet growth from supersaturated vapor at temperatures below the triple point temperature.
    Toxvaerd S
    J Chem Phys; 2016 Apr; 144(16):164502. PubMed ID: 27131552
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Solid-liquid surface free energy of Lennard-Jones liquid on smooth and rough surfaces computed by molecular dynamics using the phantom-wall method.
    Leroy F; Müller-Plathe F
    J Chem Phys; 2010 Jul; 133(4):044110. PubMed ID: 20687636
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular dynamics simulations of nucleation from vapor to solid composed of Lennard-Jones molecules.
    Tanaka KK; Tanaka H; Yamamoto T; Kawamura K
    J Chem Phys; 2011 May; 134(20):204313. PubMed ID: 21639446
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Monte Carlo simulations of thermodynamic and structural properties of Mie(14,7) fluids.
    Nasrabad AE
    J Chem Phys; 2008 Apr; 128(15):154514. PubMed ID: 18433242
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Equivalence between condensation and boiling in a Lennard-Jones fluid.
    Sanchez-Burgos I; de Hijes PM; Rosales-Pelaez P; Vega C; Sanz E
    Phys Rev E; 2020 Dec; 102(6-1):062609. PubMed ID: 33466022
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Wetting phenomenon in the liquid-vapor phase coexistence of a partially miscible Lennard-Jones binary mixture.
    Díaz-Herrera E; Moreno-Razo JA; Ramírez-Santiago G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 1):051601. PubMed ID: 15600622
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Homogeneous nucleation and growth in simple fluids. II. Scaling behavior, instabilities, and the (n,v) order parameter.
    Uline MJ; Torabi K; Corti DS
    J Chem Phys; 2010 Nov; 133(17):174512. PubMed ID: 21054056
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.