These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 19658480)

  • 1. Evolution of the A-particle island-B-particle island system at propagation of the sharp annihilation front A+B-->0.
    Shipilevsky BM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jun; 79(6 Pt 1):061114. PubMed ID: 19658480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diffusion-controlled death of A -particle and B -particle islands at propagation of the sharp annihilation front A+B-->0.
    Shipilevsky BM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 1):030101. PubMed ID: 18517310
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-similar evolution of the A-island-B-island system at diffusion-controlled propagation of the sharp annihilation front: exact asymptotic solution for arbitrary species diffusivities.
    Shipilevsky BM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 1):011119. PubMed ID: 20866577
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-similar evolution of the A-particle island-semi-infinite B-particle sea reaction-diffusion system.
    Shipilevsky BM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):012133. PubMed ID: 23944440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diffusion-controlled formation and collapse of a d-dimensional A-particle island in the B-particle sea.
    Shipilevsky BM
    Phys Rev E; 2017 Jun; 95(6-1):062137. PubMed ID: 28709311
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Death of an A -particle island in the B -particle sea: propagation and evolution of the reaction front A+B<-->C.
    Shipilevsky BM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Feb; 79(2 Pt 1):021117. PubMed ID: 19391716
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diffusion-controlled annihilation A+B→0: Coalescence, fragmentation, and collapse of nonidentical A-particle islands submerged in the B-particle sea.
    Shipilevsky BM
    Phys Rev E; 2022 Nov; 106(5-1):054206. PubMed ID: 36559379
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diffusion-controlled annihilation A+B-->0 with initially separated reactants: the death of an A particle island in the B particle sea.
    Shipilevsky BM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jun; 67(6 Pt 1):060101. PubMed ID: 16241185
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diffusion-controlled coalescence, fragmentation, and collapse of d-dimensional A-particle islands in the B-particle sea.
    Shipilevsky BM
    Phys Rev E; 2019 Dec; 100(6-1):062121. PubMed ID: 31962415
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Asymptotic front behavior in an A + B → 2A reaction under subdiffusion.
    Froemberg D; Schmidt-Martens HH; Sokolov IM; Sagués F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 1):031101. PubMed ID: 21517448
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Universal power law for front propagation in all fiber resonators.
    Coulibaly S; Taki M; Tlidi M
    Opt Express; 2014 Jan; 22(1):483-9. PubMed ID: 24515008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diffusion-controlled annihilation A+B-->0: the growth of an A-particle island from a localized A source in the B-particle sea.
    Shipilevsky BM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Sep; 70(3 Pt 1):032102. PubMed ID: 15524561
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluctuation-regularized front propagation dynamics in reaction-diffusion systems.
    Cohen E; Kessler DA; Levine H
    Phys Rev Lett; 2005 Apr; 94(15):158302. PubMed ID: 15904196
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diffusion of finite-sized hard-core interacting particles in a one-dimensional box: Tagged particle dynamics.
    Lizana L; Ambjörnsson T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 1):051103. PubMed ID: 20364943
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Propagation limits and velocity of reaction-diffusion fronts in a system of discrete random sources.
    Tang FD; Higgins AJ; Goroshin S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 2):036311. PubMed ID: 22587184
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Buoyancy-driven convection around chemical fronts traveling in covered horizontal solution layers.
    Rongy L; Goyal N; Meiburg E; De Wit A
    J Chem Phys; 2007 Sep; 127(11):114710. PubMed ID: 17887873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Velocity and diffusion coefficient of A + A <--> A reaction fronts in one dimension.
    Kumar N; Tripathy G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jul; 74(1 Pt 1):011109. PubMed ID: 16907062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Front propagation up a reaction rate gradient.
    Cohen E; Kessler DA; Levine H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Dec; 72(6 Pt 2):066126. PubMed ID: 16486029
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Front propagation in an A→2A, A→3A process in one dimension: velocity, diffusion, and velocity correlations.
    Kumar N; Tripathy G; Lindenberg K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 1):061152. PubMed ID: 21797347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nernst-Planck analysis of propagating reaction-diffusion fronts in the aqueous iodate-arsenous acid system.
    Mercer SM; Banks JM; Leaist DG
    Phys Chem Chem Phys; 2007 Oct; 9(40):5457-68. PubMed ID: 17925972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.