These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 19658552)
1. Nonlinear hydrodynamic interface instabilities driven by time-dependent accelerations. Mikaelian KO Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jun; 79(6 Pt 2):065303. PubMed ID: 19658552 [TBL] [Abstract][Full Text] [Related]
2. Analytic approach to nonlinear hydrodynamic instabilities driven by time-dependent accelerations. Mikaelian KO Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 2):016325. PubMed ID: 20365478 [TBL] [Abstract][Full Text] [Related]
3. Solution to Rayleigh-Taylor instabilities: Bubbles, spikes, and their scalings. Mikaelian KO Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):053009. PubMed ID: 25353882 [TBL] [Abstract][Full Text] [Related]
4. Exact, approximate, and hybrid treatments of viscous Rayleigh-Taylor and Richtmyer-Meshkov instabilities. Mikaelian KO Phys Rev E; 2019 Feb; 99(2-1):023112. PubMed ID: 30934361 [TBL] [Abstract][Full Text] [Related]
5. Surfactant solutions and porous substrates: spreading and imbibition. Starov VM Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660 [TBL] [Abstract][Full Text] [Related]
6. Bubble interaction model for hydrodynamic unstable mixing. Sohn SI Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jun; 75(6 Pt 2):066312. PubMed ID: 17677362 [TBL] [Abstract][Full Text] [Related]
7. Strongly nonlinear theory of rapid solidification near absolute stability. Kowal KN; Altieri AL; Davis SH Phys Rev E; 2017 Oct; 96(4-1):042801. PubMed ID: 29347461 [TBL] [Abstract][Full Text] [Related]
8. Forced nonlinear Schrödinger equation with arbitrary nonlinearity. Cooper F; Khare A; Quintero NR; Mertens FG; Saxena A Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 2):046607. PubMed ID: 22680598 [TBL] [Abstract][Full Text] [Related]
9. Self-gravity driven instabilities at accelerated interfaces. Hueckstaedt RM; Hunter JH; Lovelace RV Ann N Y Acad Sci; 2005 Jun; 1045():246-59. PubMed ID: 15980316 [TBL] [Abstract][Full Text] [Related]
10. Super-rogue waves in simulations based on weakly nonlinear and fully nonlinear hydrodynamic equations. Slunyaev A; Pelinovsky E; Sergeeva A; Chabchoub A; Hoffmann N; Onorato M; Akhmediev N Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):012909. PubMed ID: 23944540 [TBL] [Abstract][Full Text] [Related]
11. Understanding the structure of the turbulent mixing layer in hydrodynamic instabilities. Laney D; Bremer PT; Mascarenhas A; Miller P; Pascucci V IEEE Trans Vis Comput Graph; 2006; 12(5):1053-60. PubMed ID: 17080834 [TBL] [Abstract][Full Text] [Related]
12. Self-Similar Multimode Bubble-Front Evolution of the Ablative Rayleigh-Taylor Instability in Two and Three Dimensions. Zhang H; Betti R; Yan R; Zhao D; Shvarts D; Aluie H Phys Rev Lett; 2018 Nov; 121(18):185002. PubMed ID: 30444419 [TBL] [Abstract][Full Text] [Related]
13. Explicit expressions for the evolution of single-mode Rayleigh-Taylor and Richtmyer-Meshkov instabilities at arbitrary Atwood numbers. Mikaelian KO Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026319. PubMed ID: 12636812 [TBL] [Abstract][Full Text] [Related]
14. Evolution of the single-mode Rayleigh-Taylor instability under the influence of time-dependent accelerations. Ramaprabhu P; Karkhanis V; Banerjee R; Varshochi H; Khan M; Lawrie AG Phys Rev E; 2016 Jan; 93(1):013118. PubMed ID: 26871165 [TBL] [Abstract][Full Text] [Related]
15. Nonlinear dynamic behavior of microscopic bubbles near a rigid wall. Suslov SA; Ooi A; Manasseh R Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066309. PubMed ID: 23005208 [TBL] [Abstract][Full Text] [Related]