These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
518 related articles for article (PubMed ID: 19658559)
1. Stochastic calculus for uncoupled continuous-time random walks. Germano G; Politi M; Scalas E; Schilling RL Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jun; 79(6 Pt 2):066102. PubMed ID: 19658559 [TBL] [Abstract][Full Text] [Related]
2. Subordinated diffusion and continuous time random walk asymptotics. Dybiec B; Gudowska-Nowak E Chaos; 2010 Dec; 20(4):043129. PubMed ID: 21198099 [TBL] [Abstract][Full Text] [Related]
3. Monte Carlo simulation of uncoupled continuous-time random walks yielding a stochastic solution of the space-time fractional diffusion equation. Fulger D; Scalas E; Germano G Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 1):021122. PubMed ID: 18352002 [TBL] [Abstract][Full Text] [Related]
4. Fluid limit of the continuous-time random walk with general Lévy jump distribution functions. Cartea A; del-Castillo-Negrete D Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 1):041105. PubMed ID: 17994934 [TBL] [Abstract][Full Text] [Related]
5. From continuous time random walks to the fractional fokker-planck equation. Barkai E; Metzler R; Klafter J Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jan; 61(1):132-8. PubMed ID: 11046248 [TBL] [Abstract][Full Text] [Related]
6. Kinetic equation of linear fractional stable motion and applications to modeling the scaling of intermittent bursts. Watkins NW; Credgington D; Sanchez R; Rosenberg SJ; Chapman SC Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 1):041124. PubMed ID: 19518190 [TBL] [Abstract][Full Text] [Related]
7. Uncoupled continuous-time random walk model: analytical and numerical solutions. Fa KS Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052141. PubMed ID: 25353773 [TBL] [Abstract][Full Text] [Related]
8. Langevin formulation of a subdiffusive continuous-time random walk in physical time. Cairoli A; Baule A Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):012102. PubMed ID: 26274120 [TBL] [Abstract][Full Text] [Related]
9. FRACTIONAL DYNAMICS AT MULTIPLE TIMES. Meerschaert MM; Straka P J Stat Phys; 2012 Nov; 149(5):578-886. PubMed ID: 23378670 [TBL] [Abstract][Full Text] [Related]
10. Space-fractional advection-diffusion and reflective boundary condition. Krepysheva N; Di Pietro L; Néel MC Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Feb; 73(2 Pt 1):021104. PubMed ID: 16605326 [TBL] [Abstract][Full Text] [Related]
11. Continuous-time random-walk model for anomalous diffusion in expanding media. Le Vot F; Abad E; Yuste SB Phys Rev E; 2017 Sep; 96(3-1):032117. PubMed ID: 29347028 [TBL] [Abstract][Full Text] [Related]
12. Continuous-time random-walk approach to supercooled liquids. II. Mean-square displacements in polymer melts. Helfferich J; Ziebert F; Frey S; Meyer H; Farago J; Blumen A; Baschnagel J Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):042604. PubMed ID: 24827271 [TBL] [Abstract][Full Text] [Related]
13. Non-Markovian stochastic Liouville equation and its Markovian representation: Extensions of the continuous-time random-walk approach. Shushin AI Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 1):031130. PubMed ID: 18517352 [TBL] [Abstract][Full Text] [Related]
14. Uncoupled continuous-time random walks: Solution and limiting behavior of the master equation. Scalas E; Gorenflo R; Mainardi F Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jan; 69(1 Pt 1):011107. PubMed ID: 14995604 [TBL] [Abstract][Full Text] [Related]
15. Characterization of Anomalous Diffusion in Porous Biological Tissues Using Fractional Order Derivatives and Entropy. Magin RL; Ingo C; Colon-Perez L; Triplett W; Mareci TH Microporous Mesoporous Mater; 2013 Sep; 178():39-43. PubMed ID: 24072979 [TBL] [Abstract][Full Text] [Related]
16. Continuous-time random walks that alter environmental transport properties. Angstmann C; Henry BI Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec; 84(6 Pt 1):061146. PubMed ID: 22304079 [TBL] [Abstract][Full Text] [Related]
17. From diffusion to anomalous diffusion: a century after Einstein's Brownian motion. Sokolov IM; Klafter J Chaos; 2005 Jun; 15(2):26103. PubMed ID: 16035905 [TBL] [Abstract][Full Text] [Related]
19. Fractional-time random walk subdiffusion and anomalous transport with finite mean residence times: faster, not slower. Goychuk I Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 1):021113. PubMed ID: 23005728 [TBL] [Abstract][Full Text] [Related]
20. Subdiffusion in time-averaged, confined random walks. Neusius T; Sokolov IM; Smith JC Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jul; 80(1 Pt 1):011109. PubMed ID: 19658655 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]