These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
324 related articles for article (PubMed ID: 19658602)
1. Analytical linear theory for the interaction of a planar shock wave with an isotropic turbulent vorticity field. Wouchuk JG; Huete Ruiz de Lira C; Velikovich AL Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jun; 79(6 Pt 2):066315. PubMed ID: 19658602 [TBL] [Abstract][Full Text] [Related]
2. Analytical linear theory for the interaction of a planar shock wave with a two- or three-dimensional random isotropic acoustic wave field. Huete C; Wouchuk JG; Velikovich AL Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 2):026312. PubMed ID: 22463322 [TBL] [Abstract][Full Text] [Related]
3. Analytical linear theory for the interaction of a planar shock wave with a two- or three-dimensional random isotropic density field. Huete Ruiz de Lira C; Velikovich AL; Wouchuk JG Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 2):056320. PubMed ID: 21728660 [TBL] [Abstract][Full Text] [Related]
4. Interaction of a planar reacting shock wave with an isotropic turbulent vorticity field. Huete C; Jin T; Martínez-Ruiz D; Luo K Phys Rev E; 2017 Nov; 96(5-1):053104. PubMed ID: 29347709 [TBL] [Abstract][Full Text] [Related]
5. Physics of reshock and mixing in single-mode Richtmyer-Meshkov instability. Schilling O; Latini M; Don WS Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Aug; 76(2 Pt 2):026319. PubMed ID: 17930154 [TBL] [Abstract][Full Text] [Related]
6. Analytical asymptotic velocities in linear Richtmyer-Meshkov-like flows. Cobos Campos F; Wouchuk JG Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Nov; 90(5-1):053007. PubMed ID: 25493881 [TBL] [Abstract][Full Text] [Related]
8. Analytical scalings of the linear Richtmyer-Meshkov instability when a rarefaction is reflected. Cobos-Campos F; Wouchuk JG Phys Rev E; 2017 Jul; 96(1-1):013102. PubMed ID: 29347243 [TBL] [Abstract][Full Text] [Related]
9. Richtmyer-Meshkov instability: theory of linear and nonlinear evolution. Nishihara K; Wouchuk JG; Matsuoka C; Ishizaki R; Zhakhovsky VV Philos Trans A Math Phys Eng Sci; 2010 Apr; 368(1916):1769-807. PubMed ID: 20211883 [TBL] [Abstract][Full Text] [Related]
10. Effect of shock-generated turbulence on the Hugoniot jump conditions. Velikovich AL; Huete C; Wouchuk JG Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):016301. PubMed ID: 22400652 [TBL] [Abstract][Full Text] [Related]
12. Normal velocity freeze-out of the Richtmyer-Meshkov instability when a rarefaction is reflected. Wouchuk JG; Sano T Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):023005. PubMed ID: 25768595 [TBL] [Abstract][Full Text] [Related]
13. Role of the Kelvin-Helmholtz instability in the evolution of magnetized relativistic sheared plasma flows. Hamlin ND; Newman WI Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):043101. PubMed ID: 23679524 [TBL] [Abstract][Full Text] [Related]
14. Turbulence generation by shock interaction with a highly nonuniform medium. Davidovits S; Federrath C; Teyssier R; Raman KS; Collins DC; Nagel SR Phys Rev E; 2022 Jun; 105(6-2):065206. PubMed ID: 35854499 [TBL] [Abstract][Full Text] [Related]
15. Electron magnetohydrodynamics: dynamics and turbulence. Lyutikov M Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):053103. PubMed ID: 24329368 [TBL] [Abstract][Full Text] [Related]
16. Flow behind an exponential shock wave in a rotational axisymmetric perfect gas with magnetic field and variable density. Nath G; Sahu PK Springerplus; 2016; 5(1):1509. PubMed ID: 27652082 [TBL] [Abstract][Full Text] [Related]
17. Effect of shock waves on the statistics and scaling in compressible isotropic turbulence. Wang J; Wan M; Chen S; Xie C; Chen S Phys Rev E; 2018 Apr; 97(4-1):043108. PubMed ID: 29758607 [TBL] [Abstract][Full Text] [Related]
18. Instability of a planar expansion wave. Velikovich AL; Zalesak ST; Metzler N; Wouchuk JG Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Oct; 72(4 Pt 2):046306. PubMed ID: 16383532 [TBL] [Abstract][Full Text] [Related]
19. Sufficient condition for Gaussian departure in turbulence. Tordella D; Iovieno M; Bailey PR Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jan; 77(1 Pt 2):016309. PubMed ID: 18351936 [TBL] [Abstract][Full Text] [Related]
20. Analytical scalings of the linear Richtmyer-Meshkov instability when a shock is reflected. Campos FC; Wouchuk JG Phys Rev E; 2016 May; 93(5):053111. PubMed ID: 27300982 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]