These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 19658704)

  • 1. Nonlinear dynamics of superparamagnetic beads in a traveling magnetic-field wave.
    Yellen BB; Virgin LN
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jul; 80(1 Pt 1):011402. PubMed ID: 19658704
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Micromagnet arrays for on-chip focusing, switching, and separation of superparamagnetic beads and single cells.
    Rampini S; Kilinc D; Li P; Monteil C; Gandhi D; Lee GU
    Lab Chip; 2015 Aug; 15(16):3370-9. PubMed ID: 26160691
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flow-enhanced nonlinear magnetophoresis for high-resolution bioseparation.
    Li P; Mahmood A; Lee GU
    Langmuir; 2011 May; 27(10):6496-503. PubMed ID: 21506584
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The synchronization of superparamagnetic beads driven by a micro-magnetic ratchet.
    Gao L; Gottron NJ; Virgin LN; Yellen BB
    Lab Chip; 2010 Aug; 10(16):2108-14. PubMed ID: 20556295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Traveling wave magnetophoresis for high resolution chip based separations.
    Yellen BB; Erb RM; Son HS; Hewlin R; Shang H; Lee GU
    Lab Chip; 2007 Dec; 7(12):1681-8. PubMed ID: 18030387
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transport of superparamagnetic beads through a two-dimensional potential energy landscape.
    Tahir MA; Gao L; Virgin LN; Yellen BB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 1):011403. PubMed ID: 21867167
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of micromagnetic arrays for on-chip separation of superparamagnetic bead aggregates and detection of a model protein and double-stranded DNA analytes.
    Rampini S; Li P; Gandhi D; Mutas M; Ran YF; Carr M; Lee GU
    Sci Rep; 2021 Mar; 11(1):5302. PubMed ID: 33674645
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic trajectory analysis of superparamagnetic beads driven by on-chip micromagnets.
    Hu X; Abedini-Nassab R; Lim B; Yang Y; Howdyshell M; Sooryakumar R; Yellen BB; Kim C
    J Appl Phys; 2015 Nov; 118(20):203904. PubMed ID: 26648596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid microfluidic separation of magnetic beads through dielectrophoresis and magnetophoresis.
    Krishnan JN; Kim C; Park HJ; Kang JY; Kim TS; Kim SK
    Electrophoresis; 2009 May; 30(9):1457-63. PubMed ID: 19425001
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetophoretic Decoupler for Disaggregation and Interparticle Distance Control.
    Kim H; Lim B; Yoon J; Kim K; Torati SR; Kim C
    Adv Sci (Weinh); 2021 Jun; 8(12):2100532. PubMed ID: 34194951
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transient behaviour of magnetic micro-bead chains rotating in a fluid by external fields.
    Petousis I; Homburg E; Derks R; Dietzel A
    Lab Chip; 2007 Dec; 7(12):1746-51. PubMed ID: 18030396
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Translocation of bio-functionalized magnetic beads using smart magnetophoresis.
    Anandakumar S; Rani VS; Oh S; Sinha BL; Takahashi M; Kim C
    Biosens Bioelectron; 2010 Dec; 26(4):1755-8. PubMed ID: 20850293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Frequency bands of strongly nonlinear homogeneous granular systems.
    Lydon J; Jayaprakash KR; Ngo D; Starosvetsky Y; Vakakis AF; Daraio C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):012206. PubMed ID: 23944453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The force acting on a superparamagnetic bead due to an applied magnetic field.
    Shevkoplyas SS; Siegel AC; Westervelt RM; Prentiss MG; Whitesides GM
    Lab Chip; 2007 Oct; 7(10):1294-302. PubMed ID: 17896013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Geometrical optimization of microstripe arrays for microbead magnetophoresis.
    Henriksen AD; Rozlosnik N; Hansen MF
    Biomicrofluidics; 2015 Sep; 9(5):054123. PubMed ID: 26543515
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Field gradients can control the alignment of nanorods.
    Ooi C; Yellen BB
    Langmuir; 2008 Aug; 24(16):8514-21. PubMed ID: 18630934
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Micromagnet arrays enable precise manipulation of individual biological analyte-superparamagnetic bead complexes for separation and sensing.
    Rampini S; Li P; Lee GU
    Lab Chip; 2016 Oct; 16(19):3645-63. PubMed ID: 27542153
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chaotic behavior of the radiation field in the magnetically insulated transmission line oscillator.
    Jianhong H; Wu D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026503. PubMed ID: 12636834
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlled torque on superparamagnetic beads for functional biosensors.
    Janssen XJ; Schellekens AJ; van Ommering K; van Ijzendoorn LJ; Prins MW
    Biosens Bioelectron; 2009 Mar; 24(7):1937-41. PubMed ID: 19022651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental verification of the mechanisms for nonlinear harmonic growth and suppression by harmonic injection in a traveling wave tube.
    Singh A; Wöhlbier JG; Booske JH; Scharer JE
    Phys Rev Lett; 2004 May; 92(20):205005. PubMed ID: 15169363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.