These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 19658707)

  • 1. Dynamics in the metabasin space of a Lennard-Jones glass former: connectivity and transition rates.
    Yang Y; Chakraborty B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jul; 80(1 Pt 1):011501. PubMed ID: 19658707
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aging effects manifested in the potential-energy landscape of a model glass former.
    Rehwald C; Gnan N; Heuer A; Schrøder T; Dyre JC; Diezemann G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 1):021503. PubMed ID: 20866814
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-learning metabasin escape algorithm for supercooled liquids.
    Cao P; Li M; Heugle RJ; Park HS; Lin X
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 2):016710. PubMed ID: 23005566
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temperature accelerated dynamics in glass-forming materials.
    Tsalikis DG; Lempesis N; Boulougouris GC; Theodorou DN
    J Phys Chem B; 2010 Jun; 114(23):7844-53. PubMed ID: 20491458
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time evolution of dynamic propensity in a model glass former: the interplay between structure and dynamics.
    Rodriguez Fris JA; Alarcón LM; Appignanesi GA
    J Chem Phys; 2009 Jan; 130(2):024108. PubMed ID: 19154020
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reproducibility of dynamical heterogeneities and metabasin dynamics in glass forming liquids: the influence of structure on dynamics.
    Appignanesi GA; Rodríguez Fris JA; Frechero MA
    Phys Rev Lett; 2006 Jun; 96(23):237803. PubMed ID: 16803407
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabasin dynamics and local structure in supercooled water.
    Rodríguez Fris JA; Appignanesi GA; La Nave E; Sciortino F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 1):041501. PubMed ID: 17500896
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabasin approach for computing the master equation dynamics of systems with broken ergodicity.
    Mauro JC; Loucks RJ; Gupta PK
    J Phys Chem A; 2007 Aug; 111(32):7957-65. PubMed ID: 17649986
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of local structure on motions on the potential energy landscape for a model supercooled polymer.
    Jain TS; de Pablo JJ
    J Chem Phys; 2005 May; 122(17):174515. PubMed ID: 15910053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the role of inherent structures in glass-forming materials: II. Reconstruction of the mean square displacement by rigorous lifting of the inherent structure dynamics.
    Tsalikis D; Lempesis N; Boulougouris GC; Theodorou DN
    J Phys Chem B; 2008 Aug; 112(34):10628-37. PubMed ID: 18671426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the role of inherent structures in glass-forming materials: I. The vitrification process.
    Tsalikis DG; Lempesis N; Boulougouris GC; Theodorou DN
    J Phys Chem B; 2008 Aug; 112(34):10619-27. PubMed ID: 18671423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of gold nanoparticles on structure and dynamics of binary Lennard-Jones liquid: direct space analysis.
    Separdar L; Davatolhagh S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):022305. PubMed ID: 23496514
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lumping analysis for the prediction of long-time dynamics: from monomolecular reaction systems to inherent structure dynamics of glassy materials.
    Lempesis N; Tsalikis DG; Boulougouris GC; Theodorou DN
    J Chem Phys; 2011 Nov; 135(20):204507. PubMed ID: 22128943
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Connections between structural jamming, local metabasin features, and relaxation dynamics in a supercooled glassy liquid.
    Frechero MA; Alarcón LM; Schulz EP; Appignanesi GA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 1):011502. PubMed ID: 17358155
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential-energy landscape of a supercooled liquid and its resemblance to a collection of traps.
    Heuer A; Doliwa B; Saksaengwijit A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 1):021503. PubMed ID: 16196569
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of inherent structure in supercooled liquids near kinetic glass transition.
    Liao CY; Chen SH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Sep; 64(3 Pt 1):031202. PubMed ID: 11580322
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Path-integral study of a two-dimensional Lennard-Jones glass.
    Ballone P; Montanari B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jun; 65(6 Pt 2):066704. PubMed ID: 12188865
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Revisiting the concept of activation in supercooled liquids.
    Baity-Jesi M; Biroli G; Reichman DR
    Eur Phys J E Soft Matter; 2021 Jun; 44(6):77. PubMed ID: 34125327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy barriers and activated dynamics in a supercooled Lennard-Jones liquid.
    Doliwa B; Heuer A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Mar; 67(3 Pt 1):031506. PubMed ID: 12689072
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring the potential energy landscape of glass-forming systems: from inherent structures via metabasins to macroscopic transport.
    Heuer A
    J Phys Condens Matter; 2008 Sep; 20(37):373101. PubMed ID: 21694408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.