These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 19658711)

  • 1. Capillary force on particles near a drop edge resting on a substrate and a criterion for contact line pinning.
    Sangani AS; Lu C; Su K; Schwarz JA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jul; 80(1 Pt 1):011603. PubMed ID: 19658711
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Trapped liquid drop at the end of capillary.
    Wang Z; Yen HY; Chang CC; Sheng YJ; Tsao HK
    Langmuir; 2013 Oct; 29(39):12154-61. PubMed ID: 24004041
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-Sorting of Bidispersed Colloidal Particles Near Contact Line of an Evaporating Sessile Droplet.
    Patil ND; Bhardwaj R; Sharma A
    Langmuir; 2018 Oct; 34(40):12058-12070. PubMed ID: 29812943
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaporation of sessile drops containing colloidal rods: coffee-ring and order-disorder transition.
    Dugyala VR; Basavaraj MG
    J Phys Chem B; 2015 Mar; 119(9):3860-7. PubMed ID: 25521279
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alternative mechanism for coffee-ring deposition based on active role of free surface.
    Jafari Kang S; Vandadi V; Felske JD; Masoud H
    Phys Rev E; 2016 Dec; 94(6-1):063104. PubMed ID: 28085318
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the uniqueness of the receding contact angle: effects of substrate roughness and humidity on evaporation of water drops.
    Pittoni PG; Lin CH; Yu TS; Lin SY
    Langmuir; 2014 Aug; 30(31):9346-54. PubMed ID: 25029610
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Capillary force repels coffee-ring effect.
    Weon BM; Je JH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 2):015305. PubMed ID: 20866682
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of substrate temperature on pattern formation of nanoparticles from volatile drops.
    Parsa M; Harmand S; Sefiane K; Bigerelle M; Deltombe R
    Langmuir; 2015 Mar; 31(11):3354-67. PubMed ID: 25742508
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-pinning of silica suspension droplets on hydrophobic surfaces.
    Yang KC; Wang C; Hu TY; Lin HP; Cho KH; Chen LJ
    J Colloid Interface Sci; 2020 Nov; 579():212-220. PubMed ID: 32590161
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Packing and sorting colloids at the contact line of a drying drop.
    Monteux C; Lequeux F
    Langmuir; 2011 Mar; 27(6):2917-22. PubMed ID: 21294553
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Control of stain geometry by drop evaporation of surfactant containing dispersions.
    Erbil HY
    Adv Colloid Interface Sci; 2015 Aug; 222():275-90. PubMed ID: 25217332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coffee-stain growth dynamics on dry and wet surfaces.
    Boulogne F; Ingremeau F; Stone HA
    J Phys Condens Matter; 2017 Feb; 29(7):074001. PubMed ID: 28035085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deposition of Colloidal Drops Containing Ellipsoidal Particles: Competition between Capillary and Hydrodynamic Forces.
    Kim DO; Pack M; Hu H; Kim H; Sun Y
    Langmuir; 2016 Nov; 32(45):11899-11906. PubMed ID: 27788012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stokes flow inside an evaporating liquid line for any contact angle.
    Petsi AJ; Burganos VN
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 2):036324. PubMed ID: 18851160
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stick-slip patterning at low capillary numbers for an evaporating colloidal suspension.
    Bodiguel H; Doumenc F; Guerrier B
    Langmuir; 2010 Jul; 26(13):10758-63. PubMed ID: 20429601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Zipping effect on omniphobic surfaces for controlled deposition of minute amounts of fluid or colloids.
    Dufour R; Brunet P; Harnois M; Boukherroub R; Thomy V; Senez V
    Small; 2012 Apr; 8(8):1229-36. PubMed ID: 22337592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of the collective diffusion of charged nanoparticles in the convective/capillary deposition directed by receding contact lines.
    Noguera-Marín D; Moraila-Martínez CL; Cabrerizo-Vílchez M; Rodríguez-Valverde MA
    Eur Phys J E Soft Matter; 2016 Feb; 39(2):20. PubMed ID: 26920523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaporation stains: suppressing the coffee-ring effect by contact angle hysteresis.
    Li YF; Sheng YJ; Tsao HK
    Langmuir; 2013 Jun; 29(25):7802-11. PubMed ID: 23721254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Suppression of the coffee-ring effect by shape-dependent capillary interactions.
    Yunker PJ; Still T; Lohr MA; Yodh AG
    Nature; 2011 Aug; 476(7360):308-11. PubMed ID: 21850105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.