These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 19658759)

  • 1. Flow-field dynamics during droplet formation by dripping in hydrodynamic-focusing microfluidics.
    Funfschilling D; Debas H; Li HZ; Mason TG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jul; 80(1 Pt 2):015301. PubMed ID: 19658759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of acoustic droplet formation in a microfluidic flow-focusing device.
    Cheung YN; Qiu H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec; 84(6 Pt 2):066310. PubMed ID: 22304193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pinch-off dynamics and dripping-onto-substrate (DoS) rheometry of complex fluids.
    Dinic J; Jimenez LN; Sharma V
    Lab Chip; 2017 Jan; 17(3):460-473. PubMed ID: 28001165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of the breakup process of viscous droplets by an external electric field inside a microfluidic device.
    Li Y; Jain M; Ma Y; Nandakumar K
    Soft Matter; 2015 May; 11(19):3884-99. PubMed ID: 25864524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High inertial microfluidics for droplet generation in a flow-focusing geometry.
    Mastiani M; Seo S; Riou B; Kim M
    Biomed Microdevices; 2019 Jun; 21(3):50. PubMed ID: 31203430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deformation and breakup of micro- and nanoparticle stabilized droplets in microfluidic extensional flows.
    Mulligan MK; Rothstein JP
    Langmuir; 2011 Aug; 27(16):9760-8. PubMed ID: 21732665
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dripping, Jetting and Regime Transition of Droplet Formation in a Buoyancy-Assisted Microfluidic Device.
    Shen C; Liu F; Wu L; Yu C; Yu W
    Micromachines (Basel); 2020 Oct; 11(11):. PubMed ID: 33121113
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rounded multi-level microchannels with orifices made in one exposure enable aqueous two-phase system droplet microfluidics.
    Lai D; Frampton JP; Sriram H; Takayama S
    Lab Chip; 2011 Oct; 11(20):3551-4. PubMed ID: 21892481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up.
    Garstecki P; Fuerstman MJ; Stone HA; Whitesides GM
    Lab Chip; 2006 Mar; 6(3):437-46. PubMed ID: 16511628
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of double emulsion break-up in three phase glass capillary microfluidic devices.
    Nabavi SA; Gu S; Vladisavljević GT; Ekanem EE
    J Colloid Interface Sci; 2015 Jul; 450():279-287. PubMed ID: 25828435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shear force induced monodisperse droplet formation in a microfluidic device by controlling wetting properties.
    Xu JH; Luo GS; Li SW; Chen GG
    Lab Chip; 2006 Jan; 6(1):131-6. PubMed ID: 16372080
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental observations of the squeezing-to-dripping transition in T-shaped microfluidic junctions.
    Christopher GF; Noharuddin NN; Taylor JA; Anna SL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 2):036317. PubMed ID: 18851153
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of initiation, rate, and routing of spontaneous capillary-driven flow of liquid droplets through microfluidic channels on SlipChip.
    Pompano RR; Platt CE; Karymov MA; Ismagilov RF
    Langmuir; 2012 Jan; 28(3):1931-41. PubMed ID: 22233156
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic flow-focusing in ac electric fields.
    Tan SH; Semin B; Baret JC
    Lab Chip; 2014 Mar; 14(6):1099-106. PubMed ID: 24401868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A study of the production and reversible stability of EGaIn liquid metal microspheres using flow focusing.
    Thelen J; Dickey MD; Ward T
    Lab Chip; 2012 Oct; 12(20):3961-7. PubMed ID: 22895484
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Droplet microfluidics for postcolumn reactions in capillary electrophoresis.
    Abdul Keyon AS; Guijt RM; Bolch CJ; Breadmore MC
    Anal Chem; 2014 Dec; 86(23):11811-8. PubMed ID: 25310381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic generation of uniform water droplets using gas as the continuous phase.
    Jiang K; Lu AX; Dimitrakopoulos P; DeVoe DL; Raghavan SR
    J Colloid Interface Sci; 2015 Jun; 448():275-9. PubMed ID: 25744861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of monodisperse droplet generation in flow-focusing devices with hydrophilic and hydrophobic surfaces.
    Roberts CC; Rao RR; Loewenberg M; Brooks CF; Galambos P; Grillet AM; Nemer MB
    Lab Chip; 2012 Apr; 12(8):1540-7. PubMed ID: 22398953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Breakup Dynamics of Semi-dilute Polymer Solutions in a Microfluidic Flow-focusing Device.
    Xue CD; Chen XD; Li YJ; Hu GQ; Cao T; Qin KR
    Micromachines (Basel); 2020 Apr; 11(4):. PubMed ID: 32295232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.