These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 19658796)
21. A stochastic model of multistable visual perception. Merk I; Schnakenberg J Biol Cybern; 2002 Feb; 86(2):111-6. PubMed ID: 11908839 [TBL] [Abstract][Full Text] [Related]
22. Stochastic bifurcation in a driven laser system: experiment and theory. Billings L; Schwartz IB; Morgan DS; Bollt EM; Meucci R; Allaria E Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Aug; 70(2 Pt 2):026220. PubMed ID: 15447578 [TBL] [Abstract][Full Text] [Related]
23. Constructive effects of noise in homoclinic chaotic systems. Zhou CS; Kurths J; Allaria E; Boccaletti S; Meucci R; Arecchi FT Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Jun; 67(6 Pt 2):066220. PubMed ID: 16241339 [TBL] [Abstract][Full Text] [Related]
24. Phase scaling properties of perturbation-induced multistability in a driven nonlinear system. Chizhevsky VN; Corbalán R Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jul; 66(1 Pt 2):016201. PubMed ID: 12241455 [TBL] [Abstract][Full Text] [Related]
25. Model-free prediction of multistability using echo state network. Roy M; Mandal S; Hens C; Prasad A; Kuznetsov NV; Dev Shrimali M Chaos; 2022 Oct; 32(10):101104. PubMed ID: 36319300 [TBL] [Abstract][Full Text] [Related]
26. Prediction of long-term dynamics from transients. Holzfuss J Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jan; 71(1 Pt 2):016214. PubMed ID: 15697705 [TBL] [Abstract][Full Text] [Related]
29. Dynamical phenomena in systems with structurally unstable Poincare homoclinic orbits. Gonchenko SV; Shil'nikov LP; Turaev DV Chaos; 1996 Mar; 6(1):15-31. PubMed ID: 12780232 [TBL] [Abstract][Full Text] [Related]
30. How to obtain extreme multistability in coupled dynamical systems. Hens CR; Banerjee R; Feudel U; Dana SK Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 2):035202. PubMed ID: 22587141 [TBL] [Abstract][Full Text] [Related]
31. Noise-controlled dynamics through the averaging principle for stochastic slow-fast systems. Wainrib G Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 1):051113. PubMed ID: 22181375 [TBL] [Abstract][Full Text] [Related]
32. Controlling the multistability of nonlinear systems with coexisting attractors. Pisarchik AN Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Oct; 64(4 Pt 2):046203. PubMed ID: 11690121 [TBL] [Abstract][Full Text] [Related]
33. Attractors and noise: twin drivers of decisions and multistability. Braun J; Mattia M Neuroimage; 2010 Sep; 52(3):740-51. PubMed ID: 20083212 [TBL] [Abstract][Full Text] [Related]
34. Analysis of stochastic dynamics in a multistable logistic-type epidemiological model. Bashkirtseva I; Ryashko L Eur Phys J Spec Top; 2022; 231(18-20):3563-3575. PubMed ID: 35729926 [TBL] [Abstract][Full Text] [Related]
35. Stochastic resonance in a non-smooth system under colored noise excitations with a controllable parameter. Lei Y; Bi H; Zhang H Chaos; 2018 Jul; 28(7):073104. PubMed ID: 30070512 [TBL] [Abstract][Full Text] [Related]
36. Experimental deterministic coherence resonance. Martinez Avila JF; de S Cavalcante HL; Leite JR Phys Rev Lett; 2004 Oct; 93(14):144101. PubMed ID: 15524798 [TBL] [Abstract][Full Text] [Related]
37. Stochastic resonance in delayed two-coupled oscillators without common perturbations. Li QS; Zhu R Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Nov; 64(5 Pt 1):051116. PubMed ID: 11735909 [TBL] [Abstract][Full Text] [Related]
38. Multistability for nonlinear acoustic-gravity waves in a rotating atmosphere. Pati NC; Rech PC; Layek GC Chaos; 2021 Feb; 31(2):023108. PubMed ID: 33653034 [TBL] [Abstract][Full Text] [Related]
39. Cycling chaotic attractors in two models for dynamics with invariant subspaces. Ashwin P; Rucklidge AM; Sturman R Chaos; 2004 Sep; 14(3):571-82. PubMed ID: 15446967 [TBL] [Abstract][Full Text] [Related]
40. Lévy noises: double stochastic resonance in a single-well potential. Dybiec B Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 1):041111. PubMed ID: 19905277 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]