These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 19658916)
1. Positron kinetics in soft condensed matter. White RD; Robson RE Phys Rev Lett; 2009 Jun; 102(23):230602. PubMed ID: 19658916 [TBL] [Abstract][Full Text] [Related]
2. Multiterm solution of a generalized Boltzmann kinetic equation for electron and positron transport in structured and soft condensed matter. White RD; Robson RE Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 1):031125. PubMed ID: 22060346 [TBL] [Abstract][Full Text] [Related]
3. Low-energy electron and positron transport in gases and soft-condensed systems of biological relevance. White RD; Tattersall W; Boyle G; Robson RE; Dujko S; Petrovic ZLj; Bankovic A; Brunger MJ; Sullivan JP; Buckman SJ; Garcia G Appl Radiat Isot; 2014 Jan; 83 Pt B():77-85. PubMed ID: 23395226 [TBL] [Abstract][Full Text] [Related]
4. Positron kinetics in an idealized PET environment. Robson RE; Brunger MJ; Buckman SJ; Garcia G; Petrović ZLj; White RD Sci Rep; 2015 Aug; 5():12674. PubMed ID: 26246002 [TBL] [Abstract][Full Text] [Related]
5. Positron follow-up in liquid water: I. A new Monte Carlo track-structure code. Champion C; Le Loirec C Phys Med Biol; 2006 Apr; 51(7):1707-23. PubMed ID: 16552099 [TBL] [Abstract][Full Text] [Related]
6. Low-energy positron scattering from gas-phase tetrahydrofuran: a quantum treatment of the dynamics and a comparison with experiments. Franz J; Gianturco FA J Chem Phys; 2013 Nov; 139(20):204309. PubMed ID: 24289356 [TBL] [Abstract][Full Text] [Related]
8. Differential electron emission for single and multiple ionization of argon by 500 eV positrons. de Lucio OG; Gavin J; DuBois RD Phys Rev Lett; 2006 Dec; 97(24):243201. PubMed ID: 17280280 [TBL] [Abstract][Full Text] [Related]
9. A Monte Carlo program for the analysis of low-energy electron tracks in liquid water. Wiklund K; Fernández-Varea JM; Lind BK Phys Med Biol; 2011 Apr; 56(7):1985-2003. PubMed ID: 21364263 [TBL] [Abstract][Full Text] [Related]
10. Track structure: time evolution from physics to chemistry. Dingfelder M Radiat Prot Dosimetry; 2006; 122(1-4):16-21. PubMed ID: 17277326 [TBL] [Abstract][Full Text] [Related]
11. Onsager's variational principle in soft matter. Doi M J Phys Condens Matter; 2011 Jul; 23(28):284118. PubMed ID: 21709334 [TBL] [Abstract][Full Text] [Related]
12. Accurate electron inelastic cross sections and stopping powers for liquid water over the 0.1-10 keV range based on an improved dielectric description of the Bethe surface. Emfietzoglou D; Nikjoo H Radiat Res; 2007 Jan; 167(1):110-20. PubMed ID: 17214512 [TBL] [Abstract][Full Text] [Related]
13. Inelastic cross sections for low-energy electrons in liquid water: exchange and correlation effects. Emfietzoglou D; Kyriakou I; Garcia-Molina R; Abril I; Nikjoo H Radiat Res; 2013 Nov; 180(5):499-513. PubMed ID: 24131062 [TBL] [Abstract][Full Text] [Related]
14. On the use of Monte Carlo simulations to model transport of positrons in gases and liquids. Petrović ZLj; Marjanović S; Dujko S; Banković A; Malović G; Buckman S; Garcia G; White R; Brunger M Appl Radiat Isot; 2014 Jan; 83 Pt B():148-54. PubMed ID: 23466009 [TBL] [Abstract][Full Text] [Related]
15. Limitations (and merits) of PENELOPE as a track-structure code. Fernández-Varea JM; González-Muñoz G; Galassi ME; Wiklund K; Lind BK; Ahnesjö A; Tilly N Int J Radiat Biol; 2012 Jan; 88(1-2):66-70. PubMed ID: 21864015 [TBL] [Abstract][Full Text] [Related]
16. CDW fluctuations and the pseudogap in the single-particle conductivity of quasi-1D Peierls CDW systems: II. Kupčić I; Rukelj Z; Barišić S J Phys Condens Matter; 2014 May; 26(19):195601. PubMed ID: 24762557 [TBL] [Abstract][Full Text] [Related]
17. Crossover from weak to strong coupling superconductivity in multi-band systems. Dinóla Neto F; Continentino MA; Lacroix C J Phys Condens Matter; 2010 Feb; 22(7):075701. PubMed ID: 21386394 [TBL] [Abstract][Full Text] [Related]
18. A Monte Carlo study of absorbed dose distributions in both the vapor and liquid phases of water by intermediate energy electrons based on different condensed-history transport schemes. Bousis C; Emfietzoglou D; Hadjidoukas P; Nikjoo H Phys Med Biol; 2008 Jul; 53(14):3739-61. PubMed ID: 18574312 [TBL] [Abstract][Full Text] [Related]
19. EPOTRAN: a full-differential Monte Carlo code for electron and positron transport in liquid and gaseous water. Champion C; Le Loirec C; Stosic B Int J Radiat Biol; 2012 Jan; 88(1-2):54-61. PubMed ID: 22098415 [TBL] [Abstract][Full Text] [Related]
20. Modelling low energy electron and positron tracks for biomedical applications. Sanz AG; Fuss MC; Muñoz A; Blanco F; Limão-Vieira P; Brunger MJ; Buckman SJ; García G Int J Radiat Biol; 2012 Jan; 88(1-2):71-6. PubMed ID: 21923304 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]