These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 19658917)

  • 1. Reduction and possible elimination of coating thermal noise using a rigidly controlled cavity with a quantum-nondemolition technique.
    Somiya K
    Phys Rev Lett; 2009 Jun; 102(23):230801. PubMed ID: 19658917
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Demonstration of the Multimaterial Coating Concept to Reduce Thermal Noise in Gravitational-Wave Detectors.
    Tait SC; Steinlechner J; Kinley-Hanlon MM; Murray PG; Hough J; McGhee G; Pein F; Rowan S; Schnabel R; Smith C; Terkowski L; Martin IW
    Phys Rev Lett; 2020 Jul; 125(1):011102. PubMed ID: 32678642
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Progress in the measurement and reduction of thermal noise in optical coatings for gravitational-wave detectors.
    Granata M; Amato A; Cagnoli G; Coulon M; Degallaix J; Forest D; Mereni L; Michel C; Pinard L; Sassolas B; Teillon J
    Appl Opt; 2020 Feb; 59(5):A229-A235. PubMed ID: 32225410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of mirror coatings for gravitational-wave detectors.
    Steinlechner J
    Philos Trans A Math Phys Eng Sci; 2018 May; 376(2120):. PubMed ID: 29661974
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum locking of mirrors in interferometers.
    Courty JM; Heidmann A; Pinard M
    Phys Rev Lett; 2003 Feb; 90(8):083601. PubMed ID: 12633426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-sensitivity optical monitoring of a micromechanical resonator with a quantum-limited optomechanical sensor.
    Arcizet O; Cohadon PF; Briant T; Pinard M; Heidmann A; Mackowski JM; Michel C; Pinard L; Français O; Rousseau L
    Phys Rev Lett; 2006 Sep; 97(13):133601. PubMed ID: 17026032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low Mechanical Loss TiO_{2}:GeO_{2} Coatings for Reduced Thermal Noise in Gravitational Wave Interferometers.
    Vajente G; Yang L; Davenport A; Fazio M; Ananyeva A; Zhang L; Billingsley G; Prasai K; Markosyan A; Bassiri R; Fejer MM; Chicoine M; Schiettekatte F; Menoni CS
    Phys Rev Lett; 2021 Aug; 127(7):071101. PubMed ID: 34459624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical motion sensor for resonant-bar gravitational wave antennas.
    Richard JP; Pang Y; Hamilton JJ
    Appl Opt; 1992 Apr; 31(10):1641-5. PubMed ID: 20720800
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Damping and local control of mirror suspensions for laser interferometric gravitational wave detectors.
    Strain KA; Shapiro BN
    Rev Sci Instrum; 2012 Apr; 83(4):044501. PubMed ID: 22559557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Apparatus for dimensional characterization of fused silica fibers for the suspensions of advanced gravitational wave detectors.
    Cumming A; Jones R; Barton M; Cagnoli G; Cantley CA; Crooks DR; Hammond GD; Heptonstall A; Hough J; Rowan S; Strain KA
    Rev Sci Instrum; 2011 Apr; 82(4):044502. PubMed ID: 21529026
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal noise and mechanical loss of SiO
    Robinson JM; Oelker E; Milner WR; Kedar D; Zhang W; Legero T; Matei DG; Häfner S; Riehle F; Sterr U; Ye J
    Opt Lett; 2021 Feb; 46(3):592-595. PubMed ID: 33528416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Silicon-Based Optical Mirror Coatings for Ultrahigh Precision Metrology and Sensing.
    Steinlechner J; Martin IW; Bell AS; Hough J; Fletcher M; Murray PG; Robie R; Rowan S; Schnabel R
    Phys Rev Lett; 2018 Jun; 120(26):263602. PubMed ID: 30004721
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermoelastic-damping noise from sapphire mirrors in a fundamental-noise-limited interferometer.
    Black ED; Villar A; Libbrecht KG
    Phys Rev Lett; 2004 Dec; 93(24):241101. PubMed ID: 15697789
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low cryogenic mechanical loss composite silica thin film for low thermal noise dielectric mirror coatings.
    Kuo LC; Pan HW; Chang CL; Chao S
    Opt Lett; 2019 Jan; 44(2):247-250. PubMed ID: 30644872
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optically trapped mirror for reaching the standard quantum limit.
    Matsumoto N; Michimura Y; Aso Y; Tsubono K
    Opt Express; 2014 Jun; 22(11):12915-23. PubMed ID: 24921489
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum mechanics. Mechanically detecting and avoiding the quantum fluctuations of a microwave field.
    Suh J; Weinstein AJ; Lei CU; Wollman EE; Steinke SK; Meystre P; Clerk AA; Schwab KC
    Science; 2014 Jun; 344(6189):1262-5. PubMed ID: 24831528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental demonstration of a classical analog to quantum noise cancellation for use in gravitational wave detection.
    Mow-Lowry CM; Sheard BS; Gray MB; McClelland DE; Whitcomb SE
    Phys Rev Lett; 2004 Apr; 92(16):161102. PubMed ID: 15169214
    [TBL] [Abstract][Full Text] [Related]  

  • 18. "Negative" backaction noise in interferometric detection of a microlever.
    Laurent J; Mosset A; Arcizet O; Chevrier J; Huant S; Sellier H
    Phys Rev Lett; 2011 Jul; 107(5):050801. PubMed ID: 21867055
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantum nondemolition measurements.
    Braginsky VB; Vorontsov YI; Thorne KS
    Science; 1980 Aug; 209(4456):547-57. PubMed ID: 17756820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thickness uniformity measurements and damage threshold tests of large-area GaAs/AlGaAs crystalline coatings for precision interferometry.
    Koch P; Cole GD; Deutsch C; Follman D; Heu P; Kinley-Hanlon M; Kirchhoff R; Leavey S; Lehmann J; Oppermann P; Rai AK; Tornasi Z; Wöhler J; Wu DS; Zederbauer T; Lück H
    Opt Express; 2019 Dec; 27(25):36731-36740. PubMed ID: 31873446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.