These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 19658971)

  • 1. Optical emission from the interaction of fast electrons with metallic films containing a circular aperture: a study of radiative decoherence of fast electrons.
    García de Abajo FJ
    Phys Rev Lett; 2009 Jun; 102(23):237401. PubMed ID: 19658971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of decoherence in electron microscopy.
    Howie A
    Ultramicroscopy; 2011 Jun; 111(7):761-7. PubMed ID: 20702040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tunable interaction-induced localization of surface electrons in antidot nanostructured Bi2Te3 thin films.
    Liu HC; Lu HZ; He HT; Li B; Liu SG; He QL; Wang G; Sou IK; Shen SQ; Wang J
    ACS Nano; 2014 Sep; 8(9):9616-21. PubMed ID: 25184364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decoherence of matter waves by thermal emission of radiation.
    Hackermüller L; Hornberger K; Brezger B; Zeilinger A; Arndt M
    Nature; 2004 Feb; 427(6976):711-4. PubMed ID: 14973478
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transmitting the quantum state of electrons across a metallic island with Coulomb interaction.
    Duprez H; Sivre E; Anthore A; Aassime A; Cavanna A; Gennser U; Pierre F
    Science; 2019 Dec; 366(6470):1243-1247. PubMed ID: 31806813
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dissipative time-dependent quantum transport theory: Quantum interference and phonon induced decoherence dynamics.
    Zhang Y; Yam C; Chen G
    J Chem Phys; 2015 Apr; 142(16):164101. PubMed ID: 25933746
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemically linked AuNP-alkane network for enhanced photoemission and field emission.
    Xie XN; Gao X; Qi D; Xie Y; Shen L; Yang SW; Sow CH; Wee AT
    ACS Nano; 2009 Sep; 3(9):2722-30. PubMed ID: 19769404
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement of spatial coherence of electron beams by using a small selected-area aperture.
    Morishita S; Yamasaki J; Tanaka N
    Ultramicroscopy; 2013 Jun; 129():10-7. PubMed ID: 23545433
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spin manipulation of free two-dimensional electrons in Si/SiGe quantum wells.
    Tyryshkin AM; Lyon SA; Jantsch W; Schäffler F
    Phys Rev Lett; 2005 Apr; 94(12):126802. PubMed ID: 15903946
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-exciton optical gain in semiconductor nanocrystals.
    Klimov VI; Ivanov SA; Nanda J; Achermann M; Bezel I; McGuire JA; Piryatinski A
    Nature; 2007 May; 447(7143):441-6. PubMed ID: 17522678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radiative loss of coherence in free electrons: a long-range quantum phenomenon.
    Velasco CI; Di Giulio V; García de Abajo FJ
    Light Sci Appl; 2024 Jan; 13(1):31. PubMed ID: 38272893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visible cathodoluminescence of quantum dot films by direct irradiation of electron beam and its materialization as a field emission device.
    Woo JY; Lee J; Lee H; Lee N; Oh JH; Do YR; Han CS
    Opt Express; 2013 May; 21(10):12519-26. PubMed ID: 23736470
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accuracy evaluation of a Compton X-ray spectrometer with bremsstrahlung X-rays generated by a 6 MeV electron bunch.
    Kojima S; Arikawa Y; Nishimura Y; Togawa H; Zhang Z; Ikenouchi T; Ozaki T; Morace A; Nagai T; Abe Y; Sakata S; Inoue H; Utsugi M; Nakai M; Nishimura H; Shiraga H; Kato R; Fujioka S; Azechi H
    Rev Sci Instrum; 2014 Nov; 85(11):11D634. PubMed ID: 25430210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decoherence and quantum interference in a four-site model system: mechanisms and turnovers.
    Zarea M; Powell D; Renaud N; Wasielewski MR; Ratner MA
    J Phys Chem B; 2013 Jan; 117(4):1010-20. PubMed ID: 23286386
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum decoherence and quasi-equilibrium in open quantum systems with few degrees of freedom: application to 1H NMR of nematic liquid crystals.
    Segnorile HH; Zamar RC
    J Chem Phys; 2011 Dec; 135(24):244509. PubMed ID: 22225171
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Localized multiphoton emission of femtosecond electron pulses from metal nanotips.
    Ropers C; Solli DR; Schulz CP; Lienau C; Elsaesser T
    Phys Rev Lett; 2007 Jan; 98(4):043907. PubMed ID: 17358773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrides: early examples of quantum confinement.
    Dye JL
    Acc Chem Res; 2009 Oct; 42(10):1564-72. PubMed ID: 19645438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dose delivered by secondary electrons radiated by metallic objects implanted in human tissue during radiation therapy using high energy photons.
    Rao KS
    Acta Med Pol; 1989; 30(3-4):147-67. PubMed ID: 2519625
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of laser polarization on jet emission of fast electrons in femtosecond-laser plasmas.
    Chen LM; Zhang J; Li YT; Teng H; Liang TJ; Sheng ZM; Dong QL; Zhao LZ; Wei ZY; Tang XW
    Phys Rev Lett; 2001 Nov; 87(22):225001. PubMed ID: 11736403
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Light trapping cavity enhanced light transmission through a single sub-wavelength aperture in a metal film.
    Olkkonen J
    Opt Express; 2009 Dec; 17(26):23992-4001. PubMed ID: 20052110
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.