These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 19659024)

  • 1. Atomic level structure in multicomponent bulk metallic glass.
    Cheng YQ; Ma E; Sheng HW
    Phys Rev Lett; 2009 Jun; 102(24):245501. PubMed ID: 19659024
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atomic-scale heterogeneity of a multicomponent bulk metallic glass with excellent glass forming ability.
    Fujita T; Konno K; Zhang W; Kumar V; Matsuura M; Inoue A; Sakurai T; Chen MW
    Phys Rev Lett; 2009 Aug; 103(7):075502. PubMed ID: 19792657
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atomic-scale simulation to study the dynamical properties and local structure of Cu-Zr and Ni-Zr metallic glass-forming alloys.
    Yang MH; Li Y; Li JH; Liu BX
    Phys Chem Chem Phys; 2016 Mar; 18(10):7169-83. PubMed ID: 26888279
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ab initio molecular dynamics simulations of short-range order in Zr₅₀Cu₄₅Al₅ and Cu₅₀Zr₄₅Al₅ metallic glasses.
    Huang Y; Huang L; Wang CZ; Kramer MJ; Ho KM
    J Phys Condens Matter; 2016 Mar; 28(8):085102. PubMed ID: 26828778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The atomic-scale mechanism for the enhanced glass-forming-ability of a Cu-Zr based bulk metallic glass with minor element additions.
    Wang Q; Liu CT; Yang Y; Liu JB; Dong YD; Lu J
    Sci Rep; 2014 Apr; 4():4648. PubMed ID: 24721927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical and topological short-range orders in the ternary Ni-Zr-Al metallic glasses studied by Monte Carlo simulations.
    Zhao SZ; Li JH; Liu BX
    J Phys Condens Matter; 2013 Mar; 25(9):095005. PubMed ID: 23334440
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bulk metallic glass-like scattering signal in small metallic nanoparticles.
    Doan-Nguyen VV; Kimber SA; Pontoni D; Reifsnyder Hickey D; Diroll BT; Yang X; Miglierini M; Murray CB; Billinge SJ
    ACS Nano; 2014 Jun; 8(6):6163-70. PubMed ID: 24871305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atomic-scale structural evolution and stability of supercooled liquid of a Zr-based bulk metallic glass.
    Wang Q; Liu CT; Yang Y; Dong YD; Lu J
    Phys Rev Lett; 2011 May; 106(21):215505. PubMed ID: 21699316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Li(12)Cu(12.60)Al(14.37): a new ternary derivative of the binary Laves phases.
    Pavlyuk V; Dmytriv G; Tarasiuk I; Chumak I; Ehrenberg H
    Acta Crystallogr C; 2011 Dec; 67(Pt 12):i59-62. PubMed ID: 22138910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Macrophage responses to a Zr-based bulk metallic glass.
    Huang L; Zhang T; Liaw PK; He W
    J Biomed Mater Res A; 2014 Oct; 102(10):3369-78. PubMed ID: 24166768
    [TBL] [Abstract][Full Text] [Related]  

  • 11. HRTEM analysis of nanocrystallization during uniaxial compression of a bulk metallic glass at room temperature.
    Deng YF; He LL; Zhang QS; Zhang HF; Ye HQ
    Ultramicroscopy; 2004 Jan; 98(2-4):201-8. PubMed ID: 15046800
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical study on the composition location of the best glass formers in Cu-Zr amorphous alloys.
    Wang D; Zhao SJ; Liu LM
    J Phys Chem A; 2015 Jan; 119(4):806-14. PubMed ID: 25547898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heterogeneities in CuZr-based bulk metallic glasses studied by x-ray scattering.
    Wang XD; Lou HB; Gong Y; Vainio U; Jiang JZ
    J Phys Condens Matter; 2011 Feb; 23(7):075402. PubMed ID: 21411883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermodynamic calculation and interatomic potential to predict the favored composition region for the Cu-Zr-Al metallic glass formation.
    Cui YY; Wang TL; Li JH; Dai Y; Liu BX
    Phys Chem Chem Phys; 2011 Mar; 13(9):4103-8. PubMed ID: 21229150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polytetrahedral structure and glass-forming ability of simulated Ni-Zr alloys.
    Klumov BA; Ryltsev RE; Chtchelkatchev NM
    J Chem Phys; 2018 Oct; 149(13):134501. PubMed ID: 30292207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Ni-free ZrCuFeAlAg bulk metallic glass with potential for biomedical applications.
    Liu Y; Wang YM; Pang HF; Zhao Q; Liu L
    Acta Biomater; 2013 Jun; 9(6):7043-53. PubMed ID: 23429233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface engineering of a Zr-based bulk metallic glass with low energy Ar- or Ca-ion implantation.
    Huang L; Zhu C; Muntele CI; Zhang T; Liaw PK; He W
    Mater Sci Eng C Mater Biol Appl; 2015 Feb; 47():248-55. PubMed ID: 25492195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bulk metallic glass formation in the (Ti,Zr)-(Ni,Cu)-S system.
    Gross O; Ruschel L; Kuball A; Bochtler B; Adam B; Busch R
    J Phys Condens Matter; 2020 Jun; 32(26):264003. PubMed ID: 32126527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cooling rate dependence of simulated Cu64.5Zr35.5 metallic glass structure.
    Ryltsev RE; Klumov BA; Chtchelkatchev NM; Shunyaev KY
    J Chem Phys; 2016 Jul; 145(3):034506. PubMed ID: 27448895
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of Oxygen Impurities on Glass-Formation Ability in Zr2Cu Alloy.
    Wang Z; Huang L; Yue GQ; Shen B; Dong F; Zhang RJ; Zheng YX; Wang SY; Wang CZ; Kramer MJ; Ho KM; Chen LY
    J Phys Chem B; 2016 Sep; 120(34):9223-9. PubMed ID: 27509394
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.