These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Asymptotic analysis of mode-coupling theory of active nonlinear microrheology. Gnann MV; Voigtmann T Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011406. PubMed ID: 23005416 [TBL] [Abstract][Full Text] [Related]
4. Microrheology of colloidal suspensions via dynamic Monte Carlo simulations. García Daza FA; Puertas AM; Cuetos A; Patti A J Colloid Interface Sci; 2022 Jan; 605():182-192. PubMed ID: 34325340 [TBL] [Abstract][Full Text] [Related]
5. Force-induced diffusion in microrheology. Harrer ChJ; Winter D; Horbach J; Fuchs M; Voigtmann T J Phys Condens Matter; 2012 Nov; 24(46):464105. PubMed ID: 23114229 [TBL] [Abstract][Full Text] [Related]
7. Active microrheology of driven granular particles. Wang T; Grob M; Zippelius A; Sperl M Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):042209. PubMed ID: 24827243 [TBL] [Abstract][Full Text] [Related]
8. Active microrheology of colloidal suspensions of hard cuboids. Rafael EM; Tonti L; Daza FAG; Patti A Phys Rev E; 2022 Sep; 106(3-1):034612. PubMed ID: 36266794 [TBL] [Abstract][Full Text] [Related]
9. Active microrheology in a colloidal glass. Gruber M; Abade GC; Puertas AM; Fuchs M Phys Rev E; 2016 Oct; 94(4-1):042602. PubMed ID: 27841487 [TBL] [Abstract][Full Text] [Related]
10. Toward a nonequilibrium Stokes-Einstein relation via active microrheology of hydrodynamically interacting colloidal dispersions. Chu HCW; Zia RN J Colloid Interface Sci; 2019 Mar; 539():388-399. PubMed ID: 30597285 [TBL] [Abstract][Full Text] [Related]
12. Mean-field microrheology of a very soft colloidal suspension: Inertia induces shear thickening. Démery V Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062301. PubMed ID: 26172713 [TBL] [Abstract][Full Text] [Related]
13. Nonlinear response of dense colloidal suspensions under oscillatory shear: mode-coupling theory and Fourier transform rheology experiments. Brader JM; Siebenbürger M; Ballauff M; Reinheimer K; Wilhelm M; Frey SJ; Weysser F; Fuchs M Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Dec; 82(6 Pt 1):061401. PubMed ID: 21230671 [TBL] [Abstract][Full Text] [Related]
14. Velocity and displacement statistics in a stochastic model of nonlinear friction showing bounded particle speed. Menzel AM Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):052302. PubMed ID: 26651690 [TBL] [Abstract][Full Text] [Related]
16. Critical force in active microrheology. Gruber M; Puertas AM; Fuchs M Phys Rev E; 2020 Jan; 101(1-1):012612. PubMed ID: 32069683 [TBL] [Abstract][Full Text] [Related]
17. Active microrheology in corrugated channels. Puertas AM; Malgaretti P; Pagonabarraga I J Chem Phys; 2018 Nov; 149(17):174908. PubMed ID: 30408983 [TBL] [Abstract][Full Text] [Related]
18. Role of slip between a probe particle and a gel in microrheology. Fu HC; Shenoy VB; Powers TR Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Dec; 78(6 Pt 1):061503. PubMed ID: 19256842 [TBL] [Abstract][Full Text] [Related]
19. Microrheology of active suspensions. Kanazawa T; Furukawa A Soft Matter; 2024 Jul; 20(28):5527-5537. PubMed ID: 38920265 [TBL] [Abstract][Full Text] [Related]
20. First-principles constitutive equation for suspension rheology. Brader JM; Cates ME; Fuchs M Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 1):021403. PubMed ID: 23005759 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]