These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 19659242)
1. Effect of fullerene encapsulation on radial vibrational breathing-mode frequencies of single-wall carbon nanotubes. Joung SK; Okazaki T; Kishi N; Okada S; Bandow S; Iijima S Phys Rev Lett; 2009 Jul; 103(2):027403. PubMed ID: 19659242 [TBL] [Abstract][Full Text] [Related]
2. Interaction between single-wall carbon nanotubes and encapsulated C60 probed by resonance Raman spectroscopy. Joung SK; Okazaki T; Okada S; Iijima S Phys Chem Chem Phys; 2010 Jul; 12(28):8118-22. PubMed ID: 20526513 [TBL] [Abstract][Full Text] [Related]
3. Wall-to-wall stress induced in (6,5) semiconducting nanotubes by encapsulation in metallic outer tubes of different diameters: a resonance Raman study of individual C60-derived double-wall carbon nanotubes. Villalpando-Paez F; Muramatsu H; Kim YA; Farhat H; Endo M; Terrones M; Dresselhaus MS Nanoscale; 2010 Mar; 2(3):406-11. PubMed ID: 20644824 [TBL] [Abstract][Full Text] [Related]
4. Unusual high degree of unperturbed environment in the interior of single-wall carbon nanotubes. Pfeiffer R; Kuzmany H; Kramberger Ch; Schaman Ch; Pichler T; Kataura H; Achiba Y; Kürti J; Zólyomi V Phys Rev Lett; 2003 Jun; 90(22):225501. PubMed ID: 12857318 [TBL] [Abstract][Full Text] [Related]
5. A computational modeling of Raman radial breathing-like mode frequencies of fullerene encapsulated inside single-walled carbon nanotubes. Ghavanloo E; Fazelzadeh SA; Rafii-Tabar H J Mol Model; 2017 Feb; 23(2):48. PubMed ID: 28154985 [TBL] [Abstract][Full Text] [Related]
6. Pressure dependence of the radial breathing mode of carbon nanotubes: the effect of fluid adsorption. Longhurst MJ; Quirke N Phys Rev Lett; 2007 Apr; 98(14):145503. PubMed ID: 17501286 [TBL] [Abstract][Full Text] [Related]
7. Electrochemical doping of chirality-resolved carbon nanotubes. Kavan L; Kalbac M; Zukalova M; Dunsch L J Phys Chem B; 2005 Oct; 109(42):19613-9. PubMed ID: 16853536 [TBL] [Abstract][Full Text] [Related]
8. Spectroelectrochemistry of carbon nanostructures. Kavan L; Dunsch L Chemphyschem; 2007 May; 8(7):974-98. PubMed ID: 17476657 [TBL] [Abstract][Full Text] [Related]
9. Calculation of Raman parameters of real-size zigzag (n, 0) single-walled carbon nanotubes using finite-size models. Kupka T; Stachów M; Stobiński L; Kaminský J Phys Chem Chem Phys; 2016 Sep; 18(36):25058-25069. PubMed ID: 27711454 [TBL] [Abstract][Full Text] [Related]
10. Selective etching of thin single-walled carbon nanotubes. Kalbác M; Kavan L; Dunsch L J Am Chem Soc; 2009 Apr; 131(12):4529-34. PubMed ID: 19317509 [TBL] [Abstract][Full Text] [Related]
11. Doping of C60 fullerene peapods with lithium vapor: Raman spectroscopic and spectroelectrochemical studies. Kalbác M; Kavan L; Zukalová M; Dunsch L Chemistry; 2008; 14(20):6231-6. PubMed ID: 18512827 [TBL] [Abstract][Full Text] [Related]
12. In situ Raman spectroelectrochemical study of 13C-labeled fullerene peapods and carbon nanotubes. Kalbác M; Kavan L; Zukalová M; Dunsch L Small; 2007 Oct; 3(10):1746-52. PubMed ID: 17853497 [TBL] [Abstract][Full Text] [Related]
13. Conductive, capacitive, and viscoelastic properties of a new composite of the C60-pd conducting polymer and single-wall carbon nanotubes. Pieta P; Grodzka E; Winkler K; Warczak M; Sadkowski A; Zukowska GZ; Venukadasula GM; D'Souza F; Kutner W J Phys Chem B; 2009 May; 113(19):6682-91. PubMed ID: 19361175 [TBL] [Abstract][Full Text] [Related]
14. Role of intertube interactions in double- and triple-walled carbon nanotubes. Hirschmann TCh; Araujo PT; Muramatsu H; Rodriguez-Nieva JF; Seifert M; Nielsch K; Kim YA; Dresselhaus MS ACS Nano; 2014 Feb; 8(2):1330-41. PubMed ID: 24456167 [TBL] [Abstract][Full Text] [Related]
15. Structural ( n, m) determination of isolated single-wall carbon nanotubes by resonant Raman scattering. Jorio A; Saito R; Hafner JH; Lieber CM; Hunter M; McClure T; Dresselhaus G; Dresselhaus MS Phys Rev Lett; 2001 Feb; 86(6):1118-21. PubMed ID: 11178024 [TBL] [Abstract][Full Text] [Related]
16. Doping of C70 fullerene peapods with lithium vapor: Raman spectroscopic and Raman spectroelectrochemical studies. Kalbáč M; Vales V; Kavan L; Dunsch L Nanotechnology; 2014 Dec; 25(48):485706. PubMed ID: 25397777 [TBL] [Abstract][Full Text] [Related]
17. A nonlocal shell model for mode transformation in single-walled carbon nanotubes. Shi MX; Li QM; Huang Y J Phys Condens Matter; 2009 Nov; 21(45):455301. PubMed ID: 21694006 [TBL] [Abstract][Full Text] [Related]
18. DFT calculations of structures, (13)C NMR chemical shifts, and Raman RBM mode of simple models of small-diameter zigzag (4,0) carboxylated single-walled carbon nanotubes. Kupka T; Chełmecka E; Pasterny K; Stachów M; Stobiński L Magn Reson Chem; 2012 Feb; 50(2):142-51. PubMed ID: 22354820 [TBL] [Abstract][Full Text] [Related]
19. Experimental observation of single-file water filling of thin single-wall carbon nanotubes down to chiral index (5,3). Cambré S; Schoeters B; Luyckx S; Goovaerts E; Wenseleers W Phys Rev Lett; 2010 May; 104(20):207401. PubMed ID: 20867062 [TBL] [Abstract][Full Text] [Related]
20. In situ Raman spectroelectrochemistry as a tool for the differentiation of inner tubes of double-wall carbon nanotubes and thin single-wall carbon nanotubes. Kalbác M; Kavan L; Dunsch L Anal Chem; 2007 Dec; 79(23):9074-81. PubMed ID: 17973461 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]