These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 19659295)

  • 1. Atomic shuffling dominated mechanism for deformation twinning in magnesium.
    Li B; Ma E
    Phys Rev Lett; 2009 Jul; 103(3):035503. PubMed ID: 19659295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Twinning-like lattice reorientation without a crystallographic twinning plane.
    Liu BY; Wang J; Li B; Lu L; Zhang XY; Shan ZW; Li J; Jia CL; Sun J; Ma E
    Nat Commun; 2014; 5():3297. PubMed ID: 24522756
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ observation of the atomic shuffles during the {
    He Y; Fang Z; Wang C; Wang G; Mao SX
    Nat Commun; 2024 Apr; 15(1):2994. PubMed ID: 38582808
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unraveling the Atomic Shuffles of Twinning Nucleation in Hexagonal Close-Packed Rhenium Nanocrystals.
    Ma Y; Chen Y; Guo T; Wu HH; Wang R; He Y; Wang L; Qiao L
    Nano Lett; 2023 Sep; 23(18):8498-8504. PubMed ID: 37695649
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomic simulations of (101¯2), (101¯1) twinning and (101¯2) detwinning in magnesium.
    Yuasa M; Hayashi M; Mabuchi M; Chino Y
    J Phys Condens Matter; 2014 Jan; 26(1):015003. PubMed ID: 24263246
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deformation twinning mechanism in hexagonal-close-packed crystals.
    Jiang S; Jiang Z; Chen Q
    Sci Rep; 2019 Jan; 9(1):618. PubMed ID: 30679673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characteristic boundaries associated with three-dimensional twins in hexagonal metals.
    Wang S; Gong M; McCabe RJ; Capolungo L; Wang J; Tomé CN
    Sci Adv; 2020 Jul; 6(28):eaaz2600. PubMed ID: 32832597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atomistic Simulation on the Twin Boundary Migration in Mg under Shear Deformation.
    Song S; Wang Y; Wang Y; Wang X
    Materials (Basel); 2019 Sep; 12(19):. PubMed ID: 31557899
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atomistic Study of Interactions between Intrinsic Kink Defects and Dislocations in Twin Boundaries of Nanotwinned Copper during Nanoindentation.
    Hu X; Ni Y; Zhang Z
    Nanomaterials (Basel); 2020 Jan; 10(2):. PubMed ID: 32012856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theory of transformation-mediated twinning.
    Lu S; Sun X; Tian Y; An X; Li W; Chen Y; Zhang H; Vitos L
    PNAS Nexus; 2023 Jan; 2(1):pgac282. PubMed ID: 36712941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Twin Boundary Motion and Dislocation-Twin Interaction on Mechanical Behavior in Fcc Metals.
    Mianroodi JR; Svendsen B
    Materials (Basel); 2020 May; 13(10):. PubMed ID: 32414053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deformation twinning and grain partitioning in a hexagonal close-packed magnesium alloy.
    Arul Kumar M; Clausen B; Capolungo L; McCabe RJ; Liu W; Tischler JZ; Tomé CN
    Nat Commun; 2018 Nov; 9(1):4761. PubMed ID: 30420672
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal Plasticity Modeling of Anisotropic Hardening and Texture Due to Dislocation Transmutation in Twinning.
    Allen RM; Toth LS; Oppedal AL; El Kadiri H
    Materials (Basel); 2018 Sep; 11(10):. PubMed ID: 30274190
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High resolution transmission electron microscope observation of zero-strain deformation twinning mechanisms in Ag.
    Liu L; Wang J; Gong SK; Mao SX
    Phys Rev Lett; 2011 Apr; 106(17):175504. PubMed ID: 21635047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Twin boundary migration mechanisms in quasi-statically compressed and plate-impacted Mg single crystals.
    Xie KY; Hazeli K; Dixit N; Ma L; Ramesh KT; Hemker KJ
    Sci Adv; 2021 Oct; 7(42):eabg3443. PubMed ID: 34652940
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct observation of dual-step twinning nucleation in hexagonal close-packed crystals.
    He Y; Li B; Wang C; Mao SX
    Nat Commun; 2020 May; 11(1):2483. PubMed ID: 32424342
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hard-sphere displacive model of deformation twinning in hexagonal close-packed metals. Revisiting the case of the (56°, a) contraction twins in magnesium.
    Cayron C
    Acta Crystallogr A Found Adv; 2017 Jul; 73(Pt 4):346-356. PubMed ID: 28660866
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New twinning route in face-centered cubic nanocrystalline metals.
    Wang L; Guan P; Teng J; Liu P; Chen D; Xie W; Kong D; Zhang S; Zhu T; Zhang Z; Ma E; Chen M; Han X
    Nat Commun; 2017 Dec; 8(1):2142. PubMed ID: 29247224
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ atomic-scale observation of twinning-dominated deformation in nanoscale body-centred cubic tungsten.
    Wang J; Zeng Z; Weinberger CR; Zhang Z; Zhu T; Mao SX
    Nat Mater; 2015 Jun; 14(6):594-600. PubMed ID: 25751073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigating the dislocation reactions on Σ3{111} twin boundary during deformation twin nucleation process in an ultrafine-grained high-manganese steel.
    Hung CY; Shimokawa T; Bai Y; Tsuji N; Murayama M
    Sci Rep; 2021 Sep; 11(1):19298. PubMed ID: 34588568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.