These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Dephasing in a Mach-Zehnder Interferometer by an Ohmic Contact. Idrisov EG; Levkivskyi IP; Sukhorukov EV Phys Rev Lett; 2018 Jul; 121(2):026802. PubMed ID: 30085740 [TBL] [Abstract][Full Text] [Related]
4. Noise dephasing in edge states of the integer quantum Hall regime. Roulleau P; Portier F; Roche P; Cavanna A; Faini G; Gennser U; Mailly D Phys Rev Lett; 2008 Oct; 101(18):186803. PubMed ID: 18999848 [TBL] [Abstract][Full Text] [Related]
5. How to measure the transmission phase through a quantum dot in a two-terminal interferometer. Puller VI; Meir Y Phys Rev Lett; 2010 Jun; 104(25):256801. PubMed ID: 20867406 [TBL] [Abstract][Full Text] [Related]
6. An electronic Mach-Zehnder interferometer. Ji Y; Chung Y; Sprinzak D; Heiblum M; Mahalu D; Shtrikman H Nature; 2003 Mar; 422(6930):415-8. PubMed ID: 12660779 [TBL] [Abstract][Full Text] [Related]
7. Nonequilibrium dephasing in an electronic Mach-Zehnder interferometer. Youn SC; Lee HW; Sim HS Phys Rev Lett; 2008 May; 100(19):196807. PubMed ID: 18518477 [TBL] [Abstract][Full Text] [Related]
8. Influence of dephasing on shot noise in an electronic Mach-Zehnder interferometer. Marquardt F; Bruder C Phys Rev Lett; 2004 Feb; 92(5):056805. PubMed ID: 14995330 [TBL] [Abstract][Full Text] [Related]
9. Unexpected behavior in a two-path electron interferometer. Neder I; Heiblum M; Levinson Y; Mahalu D; Umansky V Phys Rev Lett; 2006 Jan; 96(1):016804. PubMed ID: 16486497 [TBL] [Abstract][Full Text] [Related]
10. Behavior of electronic interferometers in the nonlinear regime. Neder I; Ginossar E Phys Rev Lett; 2008 May; 100(19):196806. PubMed ID: 18518476 [TBL] [Abstract][Full Text] [Related]
11. Counting statistics and detector properties of quantum point contacts. Averin DV; Sukhorukov EV Phys Rev Lett; 2005 Sep; 95(12):126803. PubMed ID: 16197098 [TBL] [Abstract][Full Text] [Related]
13. Melting of Interference in the Fractional Quantum Hall Effect: Appearance of Neutral Modes. Bhattacharyya R; Banerjee M; Heiblum M; Mahalu D; Umansky V Phys Rev Lett; 2019 Jun; 122(24):246801. PubMed ID: 31322402 [TBL] [Abstract][Full Text] [Related]
14. Interference between two indistinguishable electrons from independent sources. Neder I; Ofek N; Chung Y; Heiblum M; Mahalu D; Umansky V Nature; 2007 Jul; 448(7151):333-7. PubMed ID: 17637665 [TBL] [Abstract][Full Text] [Related]
15. Mach-Zehnder interferometer in the fractional quantum Hall regime. Ponomarenko VV; Averin DV Phys Rev Lett; 2007 Aug; 99(6):066803. PubMed ID: 17930852 [TBL] [Abstract][Full Text] [Related]
16. Tuning decoherence with a voltage probe. Roulleau P; Portier F; Roche P; Cavanna A; Faini G; Gennser U; Mailly D Phys Rev Lett; 2009 Jun; 102(23):236802. PubMed ID: 19658956 [TBL] [Abstract][Full Text] [Related]
17. Multi-Particle Interference in an Electronic Mach-Zehnder Interferometer. Kotilahti J; Burset P; Moskalets M; Flindt C Entropy (Basel); 2021 Jun; 23(6):. PubMed ID: 34200952 [TBL] [Abstract][Full Text] [Related]
18. Quantum coherence engineering in the integer quantum Hall regime. Huynh PA; Portier F; le Sueur H; Faini G; Gennser U; Mailly D; Pierre F; Wegscheider W; Roche P Phys Rev Lett; 2012 Jun; 108(25):256802. PubMed ID: 23004631 [TBL] [Abstract][Full Text] [Related]
19. Time-dependent simulation and analytical modelling of electronic Mach-Zehnder interferometry with edge-states wave packets. Beggi A; Bordone P; Buscemi F; Bertoni A J Phys Condens Matter; 2015 Dec; 27(47):475301. PubMed ID: 26548374 [TBL] [Abstract][Full Text] [Related]