These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 19659321)

  • 1. Quantifying water density fluctuations and compressibility of hydration shells of hydrophobic solutes and proteins.
    Sarupria S; Garde S
    Phys Rev Lett; 2009 Jul; 103(3):037803. PubMed ID: 19659321
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How hydrophobic hydration responds to solute size and attractions: Theory and simulations.
    Athawale MV; Jamadagni SN; Garde S
    J Chem Phys; 2009 Sep; 131(11):115102. PubMed ID: 19778151
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Water density fluctuations relevant to hydrophobic hydration are unaltered by attractions.
    Remsing RC; Patel AJ
    J Chem Phys; 2015 Jan; 142(2):024502. PubMed ID: 25591367
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural Order of Water Molecules around Hydrophobic Solutes: Length-Scale Dependence and Solute-Solvent Coupling.
    Hande VR; Chakrabarty S
    J Phys Chem B; 2015 Aug; 119(34):11346-57. PubMed ID: 26039676
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studying pressure denaturation of a protein by molecular dynamics simulations.
    Sarupria S; Ghosh T; García AE; Garde S
    Proteins; 2010 May; 78(7):1641-51. PubMed ID: 20146357
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrophobicity of proteins and interfaces: insights from density fluctuations.
    Jamadagni SN; Godawat R; Garde S
    Annu Rev Chem Biomol Eng; 2011; 2():147-71. PubMed ID: 22432614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of temperature, pressure, and cosolvents on structural and dynamic properties of the hydration shell of SNase: a molecular dynamics computer simulation study.
    Smolin N; Winter R
    J Phys Chem B; 2008 Jan; 112(3):997-1006. PubMed ID: 18171045
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct characterization of hydrophobic hydration during cold and pressure denaturation.
    Das P; Matysiak S
    J Phys Chem B; 2012 May; 116(18):5342-8. PubMed ID: 22512347
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrophobic hydration from small to large lengthscales: Understanding and manipulating the crossover.
    Rajamani S; Truskett TM; Garde S
    Proc Natl Acad Sci U S A; 2005 Jul; 102(27):9475-80. PubMed ID: 15972804
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Soft collective fluctuations governing hydrophobic association.
    Godec A; Smith JC; Merzel F
    Phys Rev Lett; 2013 Sep; 111(12):127801. PubMed ID: 24093302
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decomposition of protein experimental compressibility into intrinsic and hydration shell contributions.
    Dadarlat VM; Post CB
    Biophys J; 2006 Dec; 91(12):4544-54. PubMed ID: 16997864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Terahertz absorption of dilute aqueous solutions.
    Heyden M; Tobias DJ; Matyushov DV
    J Chem Phys; 2012 Dec; 137(23):235103. PubMed ID: 23267504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring volume, compressibility and hydration changes of folded proteins upon compression.
    Voloshin VP; Medvedev NN; Smolin N; Geiger A; Winter R
    Phys Chem Chem Phys; 2015 Apr; 17(13):8499-508. PubMed ID: 25685984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of microcomplexity on hydrophobic hydration in amphiphiles.
    Tan ML; Cendagorta JR; Ichiye T
    J Am Chem Soc; 2013 Apr; 135(13):4918-21. PubMed ID: 23506339
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards a quantitative understanding of protein hydration and volumetric properties.
    Mitra L; Rouget JB; Garcia-Moreno B; Royer CA; Winter R
    Chemphyschem; 2008 Dec; 9(18):2715-21. PubMed ID: 18814170
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Origin of the dynamic transition upon pressurization of crystalline proteins.
    Oleinikova A; Smolin N; Brovchenko I
    J Phys Chem B; 2006 Oct; 110(39):19619-24. PubMed ID: 17004829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the molecular origins of volumetric data.
    Chalikian TV
    J Phys Chem B; 2008 Jan; 112(3):911-7. PubMed ID: 18171052
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal breaking of spanning water networks in the hydration shell of proteins.
    Brovchenko I; Krukau A; Smolin N; Oleinikova A; Geiger A; Winter R
    J Chem Phys; 2005 Dec; 123(22):224905. PubMed ID: 16375508
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular dynamics simulations of pressure effects on hydrophobic interactions.
    Ghosh T; García AE; Garde S
    J Am Chem Soc; 2001 Nov; 123(44):10997-1003. PubMed ID: 11686704
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heteropolymer collapse theory for protein folding in the pressure-temperature plane.
    Cheung JK; Shah P; Truskett TM
    Biophys J; 2006 Oct; 91(7):2427-35. PubMed ID: 16844760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.