These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
234 related articles for article (PubMed ID: 19659362)
41. Laser-driven three-stage heavy-ion acceleration from relativistic laser-plasma interaction. Wang HY; Lin C; Liu B; Sheng ZM; Lu HY; Ma WJ; Bin JH; Schreiber J; He XT; Chen JE; Zepf M; Yan XQ Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):013107. PubMed ID: 24580346 [TBL] [Abstract][Full Text] [Related]
42. Evidence of resonant surface-wave excitation in the relativistic regime through measurements of proton acceleration from grating targets. Ceccotti T; Floquet V; Sgattoni A; Bigongiari A; Klimo O; Raynaud M; Riconda C; Heron A; Baffigi F; Labate L; Gizzi LA; Vassura L; Fuchs J; Passoni M; Květon M; Novotny F; Possolt M; Prokůpek J; Proška J; Pšikal J; Štolcová L; Velyhan A; Bougeard M; D'Oliveira P; Tcherbakoff O; Réau F; Martin P; Macchi A Phys Rev Lett; 2013 Nov; 111(18):185001. PubMed ID: 24237527 [TBL] [Abstract][Full Text] [Related]
44. Proton acceleration in the electrostatic sheaths of hot electrons governed by strongly relativistic laser-absorption processes. Ter-Avetisyan S; Schnürer M; Sokollik T; Nickles PV; Sandner W; Reiss HR; Stein J; Habs D; Nakamura T; Mima K Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jan; 77(1 Pt 2):016403. PubMed ID: 18351940 [TBL] [Abstract][Full Text] [Related]
45. Quasimonoenergetic electron beams with relativistic energies and ultrashort duration from laser-solid interactions at 0.5 kHz. Mordovanakis AG; Easter J; Naumova N; Popov K; Masson-Laborde PE; Hou B; Sokolov I; Mourou G; Glazyrin IV; Rozmus W; Bychenkov V; Nees J; Krushelnick K Phys Rev Lett; 2009 Dec; 103(23):235001. PubMed ID: 20366152 [TBL] [Abstract][Full Text] [Related]
46. Relativistically induced transparency acceleration of light ions by an ultrashort laser pulse interacting with a heavy-ion-plasma density gradient. Sahai AA; Tsung FS; Tableman AR; Mori WB; Katsouleas TC Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):043105. PubMed ID: 24229291 [TBL] [Abstract][Full Text] [Related]
47. Review of laser-driven ion sources and their applications. Daido H; Nishiuchi M; Pirozhkov AS Rep Prog Phys; 2012 May; 75(5):056401. PubMed ID: 22790586 [TBL] [Abstract][Full Text] [Related]
48. Basic concepts in plasma accelerators. Bingham R Philos Trans A Math Phys Eng Sci; 2006 Mar; 364(1840):559-75. PubMed ID: 16483948 [TBL] [Abstract][Full Text] [Related]
50. Laser-driven shock acceleration of ion beams from spherical mass-limited targets. Henig A; Kiefer D; Geissler M; Rykovanov SG; Ramis R; Hörlein R; Osterhoff J; Major Z; Veisz L; Karsch S; Krausz F; Habs D; Schreiber J Phys Rev Lett; 2009 Mar; 102(9):095002. PubMed ID: 19392529 [TBL] [Abstract][Full Text] [Related]
51. Laser-Driven Ion Acceleration from Plasma Micro-Channel Targets. Zou DB; Pukhov A; Yi LQ; Zhuo HB; Yu TP; Yin Y; Shao FQ Sci Rep; 2017 Feb; 7():42666. PubMed ID: 28218247 [TBL] [Abstract][Full Text] [Related]
52. Optimizing laser-driven proton acceleration from overdense targets. Stockem Novo A; Kaluza MC; Fonseca RA; Silva LO Sci Rep; 2016 Jul; 6():29402. PubMed ID: 27435449 [TBL] [Abstract][Full Text] [Related]
53. Preferential enhancement of laser-driven carbon ion acceleration from optimized nanostructured surfaces. Dalui M; Wang WM; Trivikram TM; Sarkar S; Tata S; Jha J; Ayyub P; Sheng ZM; Krishnamurthy M Sci Rep; 2015 Jul; 5():11930. PubMed ID: 26153048 [TBL] [Abstract][Full Text] [Related]
54. Laser-driven proton acceleration enhancement by nanostructured foils. Margarone D; Klimo O; Kim IJ; Prokůpek J; Limpouch J; Jeong TM; Mocek T; Pšikal J; Kim HT; Proška J; Nam KH; Stolcová L; Choi IW; Lee SK; Sung JH; Yu TJ; Korn G Phys Rev Lett; 2012 Dec; 109(23):234801. PubMed ID: 23368211 [TBL] [Abstract][Full Text] [Related]
55. Scaling laws for laser-driven ion acceleration from nanometer-scale ultrathin foils. Shen XF; Qiao B; Pukhov A; Kar S; Zhu SP; Borghesi M; He XT Phys Rev E; 2021 Aug; 104(2-2):025210. PubMed ID: 34525575 [TBL] [Abstract][Full Text] [Related]
56. Electron acceleration by few-cycle laser pulses with single-wavelength spot size. Dudnikova GI; Bychenkov VY; Maksimchuk A; Mourou G; Nees J; Bochkarev SG; Vshivkov VA Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026416. PubMed ID: 12636831 [TBL] [Abstract][Full Text] [Related]
57. Generating overcritical dense relativistic electron beams via self-matching resonance acceleration. Liu B; Wang HY; Liu J; Fu LB; Xu YJ; Yan XQ; He XT Phys Rev Lett; 2013 Jan; 110(4):045002. PubMed ID: 25166171 [TBL] [Abstract][Full Text] [Related]
58. Multicascade proton acceleration by a superintense laser pulse in the regime of relativistically induced slab transparency. Gonoskov AA; Korzhimanov AV; Eremin VI; Kim AV; Sergeev AM Phys Rev Lett; 2009 May; 102(18):184801. PubMed ID: 19518877 [TBL] [Abstract][Full Text] [Related]
59. Observation of Betatron X-Ray Radiation in a Self-Modulated Laser Wakefield Accelerator Driven with Picosecond Laser Pulses. Albert F; Lemos N; Shaw JL; Pollock BB; Goyon C; Schumaker W; Saunders AM; Marsh KA; Pak A; Ralph JE; Martins JL; Amorim LD; Falcone RW; Glenzer SH; Moody JD; Joshi C Phys Rev Lett; 2017 Mar; 118(13):134801. PubMed ID: 28409970 [TBL] [Abstract][Full Text] [Related]
60. Quasimonoenergetic proton bunch generation by dual-peaked electrostatic-field acceleration in foils irradiated by an intense linearly polarized laser. Zhuo HB; Chen ZL; Yu W; Sheng ZM; Yu MY; Jin Z; Kodama R Phys Rev Lett; 2010 Aug; 105(6):065003. PubMed ID: 20867985 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]