BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 19659403)

  • 1. Actin polymerization and depolymerization coupled to cooperative hydrolysis.
    Li X; Kierfeld J; Lipowsky R
    Phys Rev Lett; 2009 Jul; 103(4):048102. PubMed ID: 19659403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The crystal structure of uncomplexed actin in the ADP state.
    Otterbein LR; Graceffa P; Dominguez R
    Science; 2001 Jul; 293(5530):708-11. PubMed ID: 11474115
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Insights into the Cooperative Nature of ATP Hydrolysis in Actin Filaments.
    Katkar HH; Davtyan A; Durumeric AEP; Hocky GM; Schramm AC; De La Cruz EM; Voth GA
    Biophys J; 2018 Oct; 115(8):1589-1602. PubMed ID: 30249402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Individual actin filaments in a microfluidic flow reveal the mechanism of ATP hydrolysis and give insight into the properties of profilin.
    Jégou A; Niedermayer T; Orbán J; Didry D; Lipowsky R; Carlier MF; Romet-Lemonne G
    PLoS Biol; 2011 Sep; 9(9):e1001161. PubMed ID: 21980262
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural biology. Actin' up.
    De La Cruz EM; Pollard TD
    Science; 2001 Jul; 293(5530):616-8. PubMed ID: 11474090
    [No Abstract]   [Full Text] [Related]  

  • 6. Effect of profilin on actin critical concentration: a theoretical analysis.
    Yarmola EG; Dranishnikov DA; Bubb MR
    Biophys J; 2008 Dec; 95(12):5544-73. PubMed ID: 18835900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nucleotide effects on the structure and dynamics of actin.
    Zheng X; Diraviyam K; Sept D
    Biophys J; 2007 Aug; 93(4):1277-83. PubMed ID: 17526584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The end of a polymerizing actin filament contains numerous ATP-subunit segments that are disconnected by ADP-subunits resulting from ATP hydrolysis.
    Pieper U; Wegner A
    Biochemistry; 1996 Apr; 35(14):4396-402. PubMed ID: 8605188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural transitions of F-actin upon ATP hydrolysis at near-atomic resolution revealed by cryo-EM.
    Merino F; Pospich S; Funk J; Wagner T; Küllmer F; Arndt HD; Bieling P; Raunser S
    Nat Struct Mol Biol; 2018 Jun; 25(6):528-537. PubMed ID: 29867215
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural basis for the destabilization of F-actin by phosphate release following ATP hydrolysis.
    Orlova A; Egelman EH
    J Mol Biol; 1992 Oct; 227(4):1043-53. PubMed ID: 1433285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of toxins on inorganic phosphate release during actin polymerization.
    Vig A; Ohmacht R; Jámbor E; Bugyi B; Nyitrai M; Hild G
    Eur Biophys J; 2011 May; 40(5):619-26. PubMed ID: 21203885
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of MeH73 in actin polymerization and ATP hydrolysis.
    Nyman T; Schüler H; Korenbaum E; Schutt CE; Karlsson R; Lindberg U
    J Mol Biol; 2002 Apr; 317(4):577-89. PubMed ID: 11955010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atomic view into Plasmodium actin polymerization, ATP hydrolysis, and fragmentation.
    Kumpula EP; Lopez AJ; Tajedin L; Han H; Kursula I
    PLoS Biol; 2019 Jun; 17(6):e3000315. PubMed ID: 31199804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nucleotide-dependence of G-actin conformation from multiple molecular dynamics simulations and observation of a putatively polymerization-competent superclosed state.
    Splettstoesser T; Noé F; Oda T; Smith JC
    Proteins; 2009 Aug; 76(2):353-64. PubMed ID: 19156817
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct evidence for ADP-Pi-F-actin as the major intermediate in ATP-actin polymerization. Rate of dissociation of Pi from actin filaments.
    Carlier MF; Pantaloni D
    Biochemistry; 1986 Dec; 25(24):7789-92. PubMed ID: 3801442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A model for actin polymerization and the kinetic effects of ATP hydrolysis.
    Pantaloni D; Hill TL; Carlier MF; Korn ED
    Proc Natl Acad Sci U S A; 1985 Nov; 82(21):7207-11. PubMed ID: 3864156
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Model of reduction of actin polymerization forces by ATP hydrolysis.
    Carlsson AE
    Phys Biol; 2008 Jul; 5(3):036002. PubMed ID: 18626129
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic evidence for a readily exchangeable nucleotide at the terminal subunit of the barbed ends of actin filaments.
    Teubner A; Wegner A
    Biochemistry; 1998 May; 37(20):7532-8. PubMed ID: 9585568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics of nucleoside triphosphate cleavage and phosphate release steps by associated rabbit skeletal actomyosin, measured using a novel fluorescent probe for phosphate.
    White HD; Belknap B; Webb MR
    Biochemistry; 1997 Sep; 36(39):11828-36. PubMed ID: 9305974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How depolymerization can promote polymerization: the case of actin and profilin.
    Yarmola EG; Bubb MR
    Bioessays; 2009 Nov; 31(11):1150-60. PubMed ID: 19795407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.