BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 19659434)

  • 1. Toxicological consequences of extracellular hemoglobin: biochemical and physiological perspectives.
    Buehler PW; D'Agnillo F
    Antioxid Redox Signal; 2010 Feb; 12(2):275-91. PubMed ID: 19659434
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CD163 and IgG codefend against cytotoxic hemoglobin via autocrine and paracrine mechanisms.
    Subramanian K; Du R; Tan NS; Ho B; Ding JL
    J Immunol; 2013 May; 190(10):5267-78. PubMed ID: 23589619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Haptoglobin: old protein with new functions.
    Alayash AI
    Clin Chim Acta; 2011 Mar; 412(7-8):493-8. PubMed ID: 21159311
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gating the radical hemoglobin to macrophages: the anti-inflammatory role of CD163, a scavenger receptor.
    Schaer DJ; Alayash AI; Buehler PW
    Antioxid Redox Signal; 2007 Jul; 9(7):991-9. PubMed ID: 17508920
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Haptoglobin, hemopexin, and related defense pathways-basic science, clinical perspectives, and drug development.
    Schaer DJ; Vinchi F; Ingoglia G; Tolosano E; Buehler PW
    Front Physiol; 2014; 5():415. PubMed ID: 25389409
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CD163-expressing monocytes constitute an endotoxin-sensitive Hb clearance compartment within the vascular system.
    Schaer CA; Vallelian F; Imhof A; Schoedon G; Schaer DJ
    J Leukoc Biol; 2007 Jul; 82(1):106-10. PubMed ID: 17460152
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hemoglobin redox reactions and red blood cell aging.
    Rifkind JM; Nagababu E
    Antioxid Redox Signal; 2013 Jun; 18(17):2274-83. PubMed ID: 23025272
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Different target specificities of haptoglobin and hemopexin define a sequential protection system against vascular hemoglobin toxicity.
    Deuel JW; Vallelian F; Schaer CA; Puglia M; Buehler PW; Schaer DJ
    Free Radic Biol Med; 2015 Dec; 89():931-43. PubMed ID: 26475040
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural stabilization in tetrameric or polymeric hemoglobin determines its interaction with endogenous antioxidant scavenger pathways.
    Buehler PW; Vallelian F; Mikolajczyk MG; Schoedon G; Schweizer T; Alayash AI; Schaer DJ
    Antioxid Redox Signal; 2008 Aug; 10(8):1449-62. PubMed ID: 18522492
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hemoglobin can attenuate hydrogen peroxide-induced oxidative stress by acting as an antioxidative peroxidase.
    Widmer CC; Pereira CP; Gehrig P; Vallelian F; Schoedon G; Buehler PW; Schaer DJ
    Antioxid Redox Signal; 2010 Feb; 12(2):185-98. PubMed ID: 19702440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hemolysis assessment and antioxidant activity evaluation modified in an oxidized erythrocyte model.
    Xu X; He J; Liu G; Diao X; Cao Y; Ye Q; Xu G; Mao W
    J Agric Food Chem; 2014 Mar; 62(9):2056-61. PubMed ID: 24559119
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Natural history of the bruise: formation, elimination, and biological effects of oxidized hemoglobin.
    Jeney V; Eaton JW; Balla G; Balla J
    Oxid Med Cell Longev; 2013; 2013():703571. PubMed ID: 23766858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contraction of the rigor actomyosin complex drives bulk hemoglobin expulsion from hemolyzing erythrocytes.
    Shirakashi R; Sisario D; Taban D; Korsa T; Wanner SB; Neubauer J; Djuzenova CS; Zimmermann H; Sukhorukov VL
    Biomech Model Mechanobiol; 2023 Apr; 22(2):417-432. PubMed ID: 36357646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nuclear magnetic resonance and oxygen affinity study of cesium binding in human erythrocytes.
    Lin W; Mota de Freitas D; Zhang Q; Olsen KW
    Arch Biochem Biophys; 1999 Sep; 369(1):78-88. PubMed ID: 10462442
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational analysis of nitric oxide biotransport to red blood cell in the presence of free hemoglobin and NO donor.
    Deonikar P; Abu-Soud HM; Kavdia M
    Microvasc Res; 2014 Sep; 95():15-25. PubMed ID: 24950305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pathological conditions involving extracellular hemoglobin: molecular mechanisms, clinical significance, and novel therapeutic opportunities for α(1)-microglobulin.
    Olsson MG; Allhorn M; Bülow L; Hansson SR; Ley D; Olsson ML; Schmidtchen A; Akerström B
    Antioxid Redox Signal; 2012 Sep; 17(5):813-46. PubMed ID: 22324321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pro-Inflammatory Actions of Red Blood Cell-Derived DAMPs.
    Jeney V
    Exp Suppl; 2018; 108():211-233. PubMed ID: 30536173
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How to evaluate blood substitutes for endothelial cell toxicity.
    Gaucher C; Menu P
    Antioxid Redox Signal; 2008 Jul; 10(7):1153-62. PubMed ID: 18331203
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanisms of hemolysis-associated platelet activation.
    Helms CC; Marvel M; Zhao W; Stahle M; Vest R; Kato GJ; Lee JS; Christ G; Gladwin MT; Hantgan RR; Kim-Shapiro DB
    J Thromb Haemost; 2013 Dec; 11(12):2148-54. PubMed ID: 24119131
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protective effects of rutin against hemoglobin oxidation.
    Grinberg LN; Rachmilewitz EA; Newmark H
    Biochem Pharmacol; 1994 Aug; 48(4):643-9. PubMed ID: 8080436
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.