BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

549 related articles for article (PubMed ID: 19659572)

  • 1. Fragile X mental retardation protein is required for chemically-induced long-term potentiation of the hippocampus in adult mice.
    Shang Y; Wang H; Mercaldo V; Li X; Chen T; Zhuo M
    J Neurochem; 2009 Nov; 111(3):635-46. PubMed ID: 19659572
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduced cortical synaptic plasticity and GluR1 expression associated with fragile X mental retardation protein deficiency.
    Li J; Pelletier MR; Perez Velazquez JL; Carlen PL
    Mol Cell Neurosci; 2002 Feb; 19(2):138-51. PubMed ID: 11860268
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glycine-induced long-term synaptic potentiation is mediated by the glycine transporter GLYT1.
    Igartua I; SolĂ­s JM; Bustamante J
    Neuropharmacology; 2007 Jun; 52(8):1586-95. PubMed ID: 17462677
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fragile X mental retardation protein regulates heterosynaptic plasticity in the hippocampus.
    Connor SA; Hoeffer CA; Klann E; Nguyen PV
    Learn Mem; 2011; 18(4):207-20. PubMed ID: 21430043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Roles of NMDA NR2B subtype receptor in prefrontal long-term potentiation and contextual fear memory.
    Zhao MG; Toyoda H; Lee YS; Wu LJ; Ko SW; Zhang XH; Jia Y; Shum F; Xu H; Li BM; Kaang BK; Zhuo M
    Neuron; 2005 Sep; 47(6):859-72. PubMed ID: 16157280
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-term potentiation in the hippocampus of fragile X knockout mice.
    Godfraind JM; Reyniers E; De Boulle K; D'Hooge R; De Deyn PP; Bakker CE; Oostra BA; Kooy RF; Willems PJ
    Am J Med Genet; 1996 Aug; 64(2):246-51. PubMed ID: 8844057
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A similar impairment in CA3 mossy fibre LTP in the R6/2 mouse model of Huntington's disease and in the complexin II knockout mouse.
    Gibson HE; Reim K; Brose N; Morton AJ; Jones S
    Eur J Neurosci; 2005 Oct; 22(7):1701-12. PubMed ID: 16197510
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial learning and long-term potentiation of mutant mice lacking D-amino-acid oxidase.
    Maekawa M; Watanabe M; Yamaguchi S; Konno R; Hori Y
    Neurosci Res; 2005 Sep; 53(1):34-8. PubMed ID: 15996778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fragile X mice: reduced long-term potentiation and N-Methyl-D-Aspartate receptor-mediated neurotransmission in dentate gyrus.
    Yun SH; Trommer BL
    J Neurosci Res; 2011 Feb; 89(2):176-82. PubMed ID: 21162125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rescue of NMDAR-dependent synaptic plasticity in Fmr1 knock-out mice.
    Bostrom CA; Majaess NM; Morch K; White E; Eadie BD; Christie BR
    Cereb Cortex; 2015 Jan; 25(1):271-9. PubMed ID: 23968838
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Late phase of long-term potentiation induced by co-application of N-methyl-d-aspartic acid and the antagonist of NR2B-containing N-methyl-d-aspartic acid receptors in rat hippocampus.
    Oh-Nishi A; Saji M; Satoh SZ; Ogata M; Suzuki N
    Neuroscience; 2009 Mar; 159(1):127-35. PubMed ID: 19010396
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Loss of the fragile X mental retardation protein decouples metabotropic glutamate receptor dependent priming of long-term potentiation from protein synthesis.
    Auerbach BD; Bear MF
    J Neurophysiol; 2010 Aug; 104(2):1047-51. PubMed ID: 20554840
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hippocampal pyramidal cells in adult Fmr1 knockout mice exhibit an immature-appearing profile of dendritic spines.
    Grossman AW; Elisseou NM; McKinney BC; Greenough WT
    Brain Res; 2006 Apr; 1084(1):158-64. PubMed ID: 16574084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Common molecular pathways mediate long-term potentiation of synaptic excitation and slow synaptic inhibition.
    Huang CS; Shi SH; Ule J; Ruggiu M; Barker LA; Darnell RB; Jan YN; Jan LY
    Cell; 2005 Oct; 123(1):105-18. PubMed ID: 16213216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calcium-stimulated adenylyl cyclases required for long-term potentiation in the anterior cingulate cortex.
    Liauw J; Wu LJ; Zhuo M
    J Neurophysiol; 2005 Jul; 94(1):878-82. PubMed ID: 15985698
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exaggerated behavioral phenotypes in Fmr1/Fxr2 double knockout mice reveal a functional genetic interaction between Fragile X-related proteins.
    Spencer CM; Serysheva E; Yuva-Paylor LA; Oostra BA; Nelson DL; Paylor R
    Hum Mol Genet; 2006 Jun; 15(12):1984-94. PubMed ID: 16675531
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasticity-specific phosphorylation of CaMKII, MAP-kinases and CREB during late-LTP in rat hippocampal slices in vitro.
    Ahmed T; Frey JU
    Neuropharmacology; 2005 Sep; 49(4):477-92. PubMed ID: 16005911
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time-dependent changes in learning ability and induction of long-term potentiation in the lithium-pilocarpine-induced epileptic mouse model.
    Zhang Y; Cai GE; Yang Q; Lu QC; Li ST; Ju G
    Epilepsy Behav; 2010 Apr; 17(4):448-54. PubMed ID: 20332069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endocannabinoids facilitate the induction of LTP in the hippocampus.
    Carlson G; Wang Y; Alger BE
    Nat Neurosci; 2002 Aug; 5(8):723-4. PubMed ID: 12080342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nefiracetam activation of CaM kinase II and protein kinase C mediated by NMDA and metabotropic glutamate receptors in olfactory bulbectomized mice.
    Moriguchi S; Han F; Shioda N; Yamamoto Y; Nakajima T; Nakagawasai O; Tadano T; Yeh JZ; Narahashi T; Fukunaga K
    J Neurochem; 2009 Jul; 110(1):170-81. PubMed ID: 19457128
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.