These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 19659733)
1. A plant thiolase involved in benzoic acid biosynthesis and volatile benzenoid production. Van Moerkercke A; Schauvinhold I; Pichersky E; Haring MA; Schuurink RC Plant J; 2009 Oct; 60(2):292-302. PubMed ID: 19659733 [TBL] [Abstract][Full Text] [Related]
2. A peroxisomal thioesterase plays auxiliary roles in plant β-oxidative benzoic acid metabolism. Adebesin F; Widhalm JR; Lynch JH; McCoy RM; Dudareva N Plant J; 2018 Mar; 93(5):905-916. PubMed ID: 29315918 [TBL] [Abstract][Full Text] [Related]
3. Involvement of snapdragon benzaldehyde dehydrogenase in benzoic acid biosynthesis. Long MC; Nagegowda DA; Kaminaga Y; Ho KK; Kish CM; Schnepp J; Sherman D; Weiner H; Rhodes D; Dudareva N Plant J; 2009 Jul; 59(2):256-65. PubMed ID: 19292760 [TBL] [Abstract][Full Text] [Related]
4. Reduction of benzenoid synthesis in petunia flowers reveals multiple pathways to benzoic acid and enhancement in auxin transport. Orlova I; Marshall-Colón A; Schnepp J; Wood B; Varbanova M; Fridman E; Blakeslee JJ; Peer WA; Murphy AS; Rhodes D; Pichersky E; Dudareva N Plant Cell; 2006 Dec; 18(12):3458-75. PubMed ID: 17194766 [TBL] [Abstract][Full Text] [Related]
5. Completion of the core β-oxidative pathway of benzoic acid biosynthesis in plants. Qualley AV; Widhalm JR; Adebesin F; Kish CM; Dudareva N Proc Natl Acad Sci U S A; 2012 Oct; 109(40):16383-8. PubMed ID: 22988098 [TBL] [Abstract][Full Text] [Related]
6. Exploring genes involved in benzoic acid biosynthesis in the Populus davidiana transcriptome and their transcriptional activity upon methyl jasmonate treatment. Park SB; Kim JY; Han JY; Ahn CH; Park EJ; Choi YE J Chem Ecol; 2017 Dec; 43(11-12):1097-1108. PubMed ID: 29129016 [TBL] [Abstract][Full Text] [Related]
7. A peroxisomally localized acyl-activating enzyme is required for volatile benzenoid formation in a Petuniaxhybrida cv. 'Mitchell Diploid' flower. Colquhoun TA; Marciniak DM; Wedde AE; Kim JY; Schwieterman ML; Levin LA; Van Moerkercke A; Schuurink RC; Clark DG J Exp Bot; 2012 Aug; 63(13):4821-33. PubMed ID: 22771854 [TBL] [Abstract][Full Text] [Related]
8. Understanding in vivo benzenoid metabolism in petunia petal tissue. Boatright J; Negre F; Chen X; Kish CM; Wood B; Peel G; Orlova I; Gang D; Rhodes D; Dudareva N Plant Physiol; 2004 Aug; 135(4):1993-2011. PubMed ID: 15286288 [TBL] [Abstract][Full Text] [Related]
9. Petunia floral volatile benzenoid/phenylpropanoid genes are regulated in a similar manner. Colquhoun TA; Verdonk JC; Schimmel BC; Tieman DM; Underwood BA; Clark DG Phytochemistry; 2010 Feb; 71(2-3):158-67. PubMed ID: 19889429 [TBL] [Abstract][Full Text] [Related]
10. Regulation of volatile benzenoid biosynthesis in petunia flowers. Schuurink RC; Haring MA; Clark DG Trends Plant Sci; 2006 Jan; 11(1):20-5. PubMed ID: 16226052 [TBL] [Abstract][Full Text] [Related]
11. Circadian clock gene LATE ELONGATED HYPOCOTYL directly regulates the timing of floral scent emission in Petunia. Fenske MP; Hewett Hazelton KD; Hempton AK; Shim JS; Yamamoto BM; Riffell JA; Imaizumi T Proc Natl Acad Sci U S A; 2015 Aug; 112(31):9775-80. PubMed ID: 26124104 [TBL] [Abstract][Full Text] [Related]
12. A peroxisomal β-oxidative pathway contributes to the formation of C6-C1 aromatic volatiles in poplar. Lackus ND; Schmidt A; Gershenzon J; Köllner TG Plant Physiol; 2021 Jun; 186(2):891-909. PubMed ID: 33723573 [TBL] [Abstract][Full Text] [Related]
13. A kinetic model describes metabolic response to perturbations and distribution of flux control in the benzenoid network of Petunia hybrida. Colón AM; Sengupta N; Rhodes D; Dudareva N; Morgan J Plant J; 2010 Apr; 62(1):64-76. PubMed ID: 20070567 [TBL] [Abstract][Full Text] [Related]
14. Regulation of terpenoid and benzenoid production in flowers. van Schie CC; Haring MA; Schuurink RC Curr Opin Plant Biol; 2006 Apr; 9(2):203-8. PubMed ID: 16458042 [TBL] [Abstract][Full Text] [Related]
15. RNAi suppression of Arogenate Dehydratase1 reveals that phenylalanine is synthesized predominantly via the arogenate pathway in petunia petals. Maeda H; Shasany AK; Schnepp J; Orlova I; Taguchi G; Cooper BR; Rhodes D; Pichersky E; Dudareva N Plant Cell; 2010 Mar; 22(3):832-49. PubMed ID: 20215586 [TBL] [Abstract][Full Text] [Related]
17. EOBII, a gene encoding a flower-specific regulator of phenylpropanoid volatiles' biosynthesis in petunia. Spitzer-Rimon B; Marhevka E; Barkai O; Marton I; Edelbaum O; Masci T; Prathapani NK; Shklarman E; Ovadis M; Vainstein A Plant Cell; 2010 Jun; 22(6):1961-76. PubMed ID: 20543029 [TBL] [Abstract][Full Text] [Related]
18. Interlinking showy traits: co-engineering of scent and colour biosynthesis in flowers. Ben Zvi MM; Negre-Zakharov F; Masci T; Ovadis M; Shklarman E; Ben-Meir H; Tzfira T; Dudareva N; Vainstein A Plant Biotechnol J; 2008 May; 6(4):403-15. PubMed ID: 18346094 [TBL] [Abstract][Full Text] [Related]
19. The lack of floral synthesis and emission of isoeugenol in Petunia axillaris subsp. parodii is due to a mutation in the isoeugenol synthase gene. Koeduka T; Orlova I; Baiga TJ; Noel JP; Dudareva N; Pichersky E Plant J; 2009 Jun; 58(6):961-9. PubMed ID: 19222805 [TBL] [Abstract][Full Text] [Related]
20. Silencing a prohibitin alters plant development and senescence. Chen JC; Jiang CZ; Reid MS Plant J; 2005 Oct; 44(1):16-24. PubMed ID: 16167892 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]