These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. TIGIT and CD96: new checkpoint receptor targets for cancer immunotherapy. Dougall WC; Kurtulus S; Smyth MJ; Anderson AC Immunol Rev; 2017 Mar; 276(1):112-120. PubMed ID: 28258695 [TBL] [Abstract][Full Text] [Related]
4. Rationale for anti-OX40 cancer immunotherapy. Aspeslagh S; Postel-Vinay S; Rusakiewicz S; Soria JC; Zitvogel L; Marabelle A Eur J Cancer; 2016 Jan; 52():50-66. PubMed ID: 26645943 [TBL] [Abstract][Full Text] [Related]
5. The future of immune checkpoint cancer therapy after PD-1 and CTLA-4. Hahn AW; Gill DM; Pal SK; Agarwal N Immunotherapy; 2017 Jun; 9(8):681-692. PubMed ID: 28653573 [TBL] [Abstract][Full Text] [Related]
6. Cell intrinsic mechanisms of T-cell inhibition and application to cancer therapy. Peggs KS; Quezada SA; Allison JP Immunol Rev; 2008 Aug; 224():141-65. PubMed ID: 18759925 [TBL] [Abstract][Full Text] [Related]
7. Agonists of Co-stimulation in Cancer Immunotherapy Directed Against CD137, OX40, GITR, CD27, CD28, and ICOS. Sanmamed MF; Pastor F; Rodriguez A; Perez-Gracia JL; Rodriguez-Ruiz ME; Jure-Kunkel M; Melero I Semin Oncol; 2015 Aug; 42(4):640-55. PubMed ID: 26320067 [TBL] [Abstract][Full Text] [Related]
8. Inhibitory receptors as targets for cancer immunotherapy. Turnis ME; Andrews LP; Vignali DA Eur J Immunol; 2015 Jul; 45(7):1892-905. PubMed ID: 26018646 [TBL] [Abstract][Full Text] [Related]
9. Modulation of CTLA-4 and GITR for cancer immunotherapy. Avogadri F; Yuan J; Yang A; Schaer D; Wolchok JD Curr Top Microbiol Immunol; 2011; 344():211-44. PubMed ID: 20563707 [TBL] [Abstract][Full Text] [Related]
10. Overcoming Tumor-Induced Immune Suppression: From Relieving Inhibition to Providing Costimulation with T Cell Agonists. Emerson DA; Redmond WL BioDrugs; 2018 Jun; 32(3):221-231. PubMed ID: 29637478 [TBL] [Abstract][Full Text] [Related]
11. Reduction of immunosuppressive tumor microenvironment in cholangiocarcinoma by ex vivo targeting immune checkpoint molecules. Zhou G; Sprengers D; Mancham S; Erkens R; Boor PPC; van Beek AA; Doukas M; Noordam L; Campos Carrascosa L; de Ruiter V; van Leeuwen RWF; Polak WG; de Jonge J; Groot Koerkamp B; van Rosmalen B; van Gulik TM; Verheij J; IJzermans JNM; Bruno MJ; Kwekkeboom J J Hepatol; 2019 Oct; 71(4):753-762. PubMed ID: 31195061 [TBL] [Abstract][Full Text] [Related]
12. [Regulatory T cells in cancer immunotherapy]. Nishikawa H Rinsho Ketsueki; 2014 Oct; 55(10):2183-9. PubMed ID: 25297785 [No Abstract] [Full Text] [Related]
13. Cancer immunotherapy--revisited. Lesterhuis WJ; Haanen JB; Punt CJ Nat Rev Drug Discov; 2011 Aug; 10(8):591-600. PubMed ID: 21804596 [TBL] [Abstract][Full Text] [Related]
15. Exploiting CTLA-4, PD-1 and PD-L1 to reactivate the host immune response against cancer. Quezada SA; Peggs KS Br J Cancer; 2013 Apr; 108(8):1560-5. PubMed ID: 23511566 [TBL] [Abstract][Full Text] [Related]
16. Targeting T Cell Co-receptors for Cancer Therapy. Callahan MK; Postow MA; Wolchok JD Immunity; 2016 May; 44(5):1069-78. PubMed ID: 27192570 [TBL] [Abstract][Full Text] [Related]
17. CTLA-4 and PD-1 Control of T-Cell Motility and Migration: Implications for Tumor Immunotherapy. Brunner-Weinzierl MC; Rudd CE Front Immunol; 2018; 9():2737. PubMed ID: 30542345 [TBL] [Abstract][Full Text] [Related]
18. Monoclonal antibodies: versatile platforms for cancer immunotherapy. Weiner LM; Surana R; Wang S Nat Rev Immunol; 2010 May; 10(5):317-27. PubMed ID: 20414205 [TBL] [Abstract][Full Text] [Related]
19. Anti-cytotoxic T lymphocyte antigen-4 (CTLA-4) immunotherapy for the treatment of prostate cancer. Thompson RH; Allison JP; Kwon ED Urol Oncol; 2006; 24(5):442-7. PubMed ID: 16962497 [TBL] [Abstract][Full Text] [Related]
20. Therapy implications of the role of interleukin-2 in cancer. Lissoni P Expert Rev Clin Immunol; 2017 May; 13(5):491-498. PubMed ID: 27782752 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]