BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

274 related articles for article (PubMed ID: 19660468)

  • 1. L-type Ca(2+) current in ventricular cardiomyocytes.
    Benitah JP; Alvarez JL; Gómez AM
    J Mol Cell Cardiol; 2010 Jan; 48(1):26-36. PubMed ID: 19660468
    [TBL] [Abstract][Full Text] [Related]  

  • 2. t-Tubules and sarcoplasmic reticulum function in cardiac ventricular myocytes.
    Orchard C; Brette F
    Cardiovasc Res; 2008 Jan; 77(2):237-44. PubMed ID: 18006490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inactivation of L-type calcium channels in cardiomyocytes. Experimental and theoretical approaches.
    Kubalová Z
    Gen Physiol Biophys; 2003 Dec; 22(4):441-54. PubMed ID: 15113117
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A mechanism distinct from the L-type Ca current or Na-Ca exchange contributes to Ca entry in rat ventricular myocytes.
    Kupittayanant P; Trafford AW; Díaz ME; Eisner DA
    Cell Calcium; 2006 May; 39(5):417-23. PubMed ID: 16563501
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cardiac T-type Ca(2+) channels in the heart.
    Ono K; Iijima T
    J Mol Cell Cardiol; 2010 Jan; 48(1):65-70. PubMed ID: 19729018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of Na+-K+ pump and L-type Ca2+ channel by glibenclamide in Guinea pig ventricular myocytes.
    Lee SY; Lee CO
    J Pharmacol Exp Ther; 2005 Jan; 312(1):61-8. PubMed ID: 15365090
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immunogold-labeled L-type calcium channels are clustered in the surface plasma membrane overlying junctional sarcoplasmic reticulum in guinea-pig myocytes-implications for excitation-contraction coupling in cardiac muscle.
    Gathercole DV; Colling DJ; Skepper JN; Takagishi Y; Levi AJ; Severs NJ
    J Mol Cell Cardiol; 2000 Nov; 32(11):1981-94. PubMed ID: 11040103
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The L-type Ca(2+) channel as a potential mediator of pathology during alterations in cellular redox state.
    Hool LC
    Heart Lung Circ; 2009 Feb; 18(1):3-10. PubMed ID: 19119068
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transient exposure to hydrogen peroxide causes an increase in mitochondria-derived superoxide as a result of sustained alteration in L-type Ca2+ channel function in the absence of apoptosis in ventricular myocytes.
    Viola HM; Arthur PG; Hool LC
    Circ Res; 2007 Apr; 100(7):1036-44. PubMed ID: 17347474
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of L-type Ca(2+) channel current density and inactivation by beta-adrenergic stimulation during murine cardiac embryogenesis.
    Nguemo F; Sasse P; Fleischmann BK; Kamanyi A; Schunkert H; Hescheler J; Reppel M
    Basic Res Cardiol; 2009 May; 104(3):295-306. PubMed ID: 18953481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antisense oligonucleotide against the Ca channel beta subunit decreases L-type Ca current in rat ventricular myocytes.
    Leach RN; Brette F; Orchard CH
    Biochem Biophys Res Commun; 2007 Jan; 352(3):794-8. PubMed ID: 17141184
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 'Ca(2+)-induced Ca(2+) entry' or how the L-type Ca(2+) channel remodels its own signalling pathway in cardiac cells.
    Richard S; Perrier E; Fauconnier J; Perrier R; Pereira L; Gõmez AM; Bénitah JP
    Prog Biophys Mol Biol; 2006; 90(1-3):118-35. PubMed ID: 15987656
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sarcoplasmic reticulum Ca content, sarcolemmal Ca influx and the genesis of arrhythmias in isolated guinea-pig cardiomyocytes.
    Tweedie D; Harding SE; MacLeod KT
    J Mol Cell Cardiol; 2000 Feb; 32(2):261-72. PubMed ID: 10722802
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gene therapy to inhibit the calcium channel beta subunit: physiological consequences and pathophysiological effects in models of cardiac hypertrophy.
    Cingolani E; Ramirez Correa GA; Kizana E; Murata M; Cho HC; Marbán E
    Circ Res; 2007 Jul; 101(2):166-75. PubMed ID: 17556655
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Redox regulation of cardiac calcium channels and transporters.
    Zima AV; Blatter LA
    Cardiovasc Res; 2006 Jul; 71(2):310-21. PubMed ID: 16581043
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cross-talk between L-type Ca2+ channels and mitochondria.
    Viola HM; Hool LC
    Clin Exp Pharmacol Physiol; 2010 Feb; 37(2):229-35. PubMed ID: 19671062
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ca2+ influx-induced sarcoplasmic reticulum Ca2+ overload causes mitochondrial-dependent apoptosis in ventricular myocytes.
    Chen X; Zhang X; Kubo H; Harris DM; Mills GD; Moyer J; Berretta R; Potts ST; Marsh JD; Houser SR
    Circ Res; 2005 Nov; 97(10):1009-17. PubMed ID: 16210547
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Overexpression of the integrin beta(1A) subunit and the beta(1A) cytoplasmic domain modifies the beta-adrenergic regulation of the cardiac L-type Ca(2+)current.
    Cheng Q; Ross RS; Walsh KB
    J Mol Cell Cardiol; 2004 Jun; 36(6):809-19. PubMed ID: 15158122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantification of calcium entry at the T-tubules and surface membrane in rat ventricular myocytes.
    Brette F; Sallé L; Orchard CH
    Biophys J; 2006 Jan; 90(1):381-9. PubMed ID: 16214862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrogen sulphide is an inhibitor of L-type calcium channels and mechanical contraction in rat cardiomyocytes.
    Sun YG; Cao YX; Wang WW; Ma SF; Yao T; Zhu YC
    Cardiovasc Res; 2008 Sep; 79(4):632-41. PubMed ID: 18524810
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.