BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 19660470)

  • 1. Crystal structure of the three tandem FF domains of the transcription elongation regulator CA150.
    Lu M; Yang J; Ren Z; Sabui S; Espejo A; Bedford MT; Jacobson RH; Jeruzalmi D; McMurray JS; Chen X
    J Mol Biol; 2009 Oct; 393(2):397-408. PubMed ID: 19660470
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural studies of FF domains of the transcription factor CA150 provide insights into the organization of FF domain tandem arrays.
    Murphy JM; Hansen DF; Wiesner S; Muhandiram DR; Borg M; Smith MJ; Sicheri F; Kay LE; Forman-Kay JD; Pawson T
    J Mol Biol; 2009 Oct; 393(2):409-24. PubMed ID: 19715701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human transcription elongation factor CA150 localizes to splicing factor-rich nuclear speckles and assembles transcription and splicing components into complexes through its amino and carboxyl regions.
    Sánchez-Alvarez M; Goldstrohm AC; Garcia-Blanco MA; Suñé C
    Mol Cell Biol; 2006 Jul; 26(13):4998-5014. PubMed ID: 16782886
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solution structure of the yeast URN1 splicing factor FF domain: comparative analysis of charge distributions in FF domain structures-FFs and SURPs, two domains with a similar fold.
    Bonet R; Ramirez-Espain X; Macias MJ
    Proteins; 2008 Dec; 73(4):1001-9. PubMed ID: 18536009
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FF domains of CA150 bind transcription and splicing factors through multiple weak interactions.
    Smith MJ; Kulkarni S; Pawson T
    Mol Cell Biol; 2004 Nov; 24(21):9274-85. PubMed ID: 15485897
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Specific interaction of the transcription elongation regulator TCERG1 with RNA polymerase II requires simultaneous phosphorylation at Ser2, Ser5, and Ser7 within the carboxyl-terminal domain repeat.
    Liu J; Fan S; Lee CJ; Greenleaf AL; Zhou P
    J Biol Chem; 2013 Apr; 288(15):10890-901. PubMed ID: 23436654
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The transcription elongation factor CA150 interacts with RNA polymerase II and the pre-mRNA splicing factor SF1.
    Goldstrohm AC; Albrecht TR; Suñé C; Bedford MT; Garcia-Blanco MA
    Mol Cell Biol; 2001 Nov; 21(22):7617-28. PubMed ID: 11604498
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein-interaction modules that organize nuclear function: FF domains of CA150 bind the phosphoCTD of RNA polymerase II.
    Carty SM; Goldstrohm AC; Suñé C; Garcia-Blanco MA; Greenleaf AL
    Proc Natl Acad Sci U S A; 2000 Aug; 97(16):9015-20. PubMed ID: 10908677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of a conserved domain common to the transcription factors TFIIS, elongin A, and CRSP70.
    Booth V; Koth CM; Edwards AM; Arrowsmith CH
    J Biol Chem; 2000 Oct; 275(40):31266-8. PubMed ID: 10811649
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The structure of an FF domain from human HYPA/FBP11.
    Allen M; Friedler A; Schon O; Bycroft M
    J Mol Biol; 2002 Oct; 323(3):411-6. PubMed ID: 12381297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 1H, 15N resonance assignment and three-dimensional structure of CYP1 (HAP1) DNA-binding domain.
    Timmerman J; Vuidepot AL; Bontems F; Lallemand JY; Gervais M; Shechter E; Guiard B
    J Mol Biol; 1996 Jun; 259(4):792-804. PubMed ID: 8683583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conspicuous accumulation of transcription elongation repressor hrp130/CA150 on the intron-rich Balbiani ring 3 gene.
    Sun X; Zhao J; Kylberg K; Soop T; Palka K; Sonnhammer E; Visa N; Alzhanova-Ericsson AT; Daneholt B
    Chromosoma; 2004 Nov; 113(5):244-57. PubMed ID: 15480727
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural comparison of the PhoB and OmpR DNA-binding/transactivation domains and the arrangement of PhoB molecules on the phosphate box.
    Okamura H; Hanaoka S; Nagadoi A; Makino K; Nishimura Y
    J Mol Biol; 2000 Feb; 295(5):1225-36. PubMed ID: 10653699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The DNA-binding domain of OmpR: crystal structures of a winged helix transcription factor.
    Martínez-Hackert E; Stock AM
    Structure; 1997 Jan; 5(1):109-24. PubMed ID: 9016718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The structure of Prp40 FF1 domain and its interaction with the crn-TPR1 motif of Clf1 gives a new insight into the binding mode of FF domains.
    Gasch A; Wiesner S; Martin-Malpartida P; Ramirez-Espain X; Ruiz L; Macias MJ
    J Biol Chem; 2006 Jan; 281(1):356-64. PubMed ID: 16253993
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solution structure and ligand recognition of the WW domain pair of the yeast splicing factor Prp40.
    Wiesner S; Stier G; Sattler M; Macias MJ
    J Mol Biol; 2002 Dec; 324(4):807-22. PubMed ID: 12460579
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure of the amino-terminal protein interaction domain of STAT-4.
    Vinkemeier U; Moarefi I; Darnell JE; Kuriyan J
    Science; 1998 Feb; 279(5353):1048-52. PubMed ID: 9461439
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutational analysis of the highly conserved C-terminal residues of the XylS protein, a member of the AraC family of transcriptional regulators.
    Manzanera M; Marqués S; Ramos JL
    FEBS Lett; 2000 Jul; 476(3):312-7. PubMed ID: 10913634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure of a transcriptionally active Smad4 fragment.
    Qin B; Lam SS; Lin K
    Structure; 1999 Dec; 7(12):1493-503. PubMed ID: 10647180
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure of NusA from Thermotoga maritima and functional implication of the N-terminal domain.
    Shin DH; Nguyen HH; Jancarik J; Yokota H; Kim R; Kim SH
    Biochemistry; 2003 Nov; 42(46):13429-37. PubMed ID: 14621988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.